Temperature dependence of the lattice constant of Silicon of different isotopic compositions measured by Bragg Backscattering of Synchrotron Radiation

Yu.V. Shvyd’ko, H.-C. Wille, E. Gerdau, M. Gerken, J. Jäschke, and J. Zegenhagen

II. Inst. für Experimentalphysik Universität Hamburg, Luruper Chaussee 149, D-22761 Hamburg, Germany
1Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, D-70569 Stuttgart, Germany

The lattice constant \(d \) of a crystal depends on its isotopic composition. As pointed out in [1, 2] this is due to the influence of the atomic mass on the zero-point motion. The effect is stronger at low temperatures and is expected to vanish above the Debye temperature. At low temperatures the effect has already been studied for Ge using x-ray standing wave technique with an accuracy of about \(\delta(\Delta d/d) \sim 10^{-5} \) [3]. We studied a layered \(^{30}\text{Si}/^{28}\text{Si} \) crystal system consisting of a 550 \(\mu \text{m} \) thick \(^{28}\text{Si} \) single crystal substrate with an about 10 \(\mu \text{m} \) thick epitaxial single crystal layer of \(^{30}\text{Si} \) on top. The measurements were performed in a backscattering setup using 14.4 keV x-rays at the wiggler beamline BW4 in HASYLAB. The experimental setup is shown in figure 1.

A high-heat-load Si(111) monochromator (M) provided 14.44 keV radiation with \(\simeq 3 \) eV bandwidth. The high energy resolution monochromator (HRM) installed downstream monochromatizes the radiation further to a 7 meV bandwidth. The energy of the radiation is set to the Bragg back-reflection energy for the (12 4 0) reflection in Si, which is 14.438 keV at room temperature. The energy width of the (12 4 0) Bragg backreflection is 6 meV (in a thick crystal) and its energy changes by 1.4 meV if the relative change of the lattice constant \(\delta d/d \) is \(10^{-7} \). The \(^{30}\text{Si}/^{28}\text{Si} \) layer is fixed in an oven. A computer controlled temperature stabilization keeps the temperature stable within a few mK [4]. A semitransparent avalanche photo diode (D) with 1 ns time resolution is used to detect backscattered radiation [5]. Energy spectra of (12 4 0) Bragg backreflection at different temperatures in a range between 320 K and 702 K were measured. A typical one is shown in figure 2. To avoid multiple beam scattering effects in Si, the measurements were performed 1 mrad off exact backscattering. The sharp peak at \(E - E_0 = 0 \) is due to the (12 4 0) reflection of the \(^{28}\text{Si} \) single crystal substrate. The broader peak at \(E - E_0 = 180 \) meV with superimposed oscillations (thickness Pendellösung effect) is the backscattering spectrum of the thin \(^{30}\text{Si} \) epitaxial layer. The fit, using the dynamical theory, is shown by the solid line. It allows us to determine the difference \(\Delta d \) of the lattice constants in \(^{30}\text{Si} \) and \(^{28}\text{Si} \) with a relative accuracy of \(\delta(\Delta d/d) \simeq 2 \times 10^{-7} \). This is...
Figure 2: Backscattering spectra of 30Si/28Si at 678 K

quite precise compared with the accuracy that was achieved for Ge. Figure 3 shows the difference of the lattice constants Δd as a function of temperature evaluated from the measured backscattering spectra. At 645 K, the Debye temperature of silicon, the difference Δd does not vanish yet, as predicted by the theory. The measurements at higher temperatures are in progress.

Figure 3: Difference of the lattice constants in 30Si/28Si vs temperature

References

