Thermal diffuse scattering
in grazing incidence diffraction

S.A. Grigorian1,3, U. Pietsch1, J. Grenzer1 and I.A. Vartanyants2,3

1University of Potsdam, Institute of Physics, Am Neuen Palais 10, 14469 Potsdam, Germany
2University of Illinois, Physics Department, 1110 W. Green St., Urbana IL 61801, USA
3A.V. Shubnikov Institute of Crystallography RAS, Leninskii pr. 59, 117333 Moscow, Russia

Inelastic scattering processes of hard x-ray radiation have received increasing attention in recent years. One of such inelastic decay channels is the scattering of x-rays by thermal phonons, the thermal diffuse scattering (TDS). The main features of TDS associated with Bragg diffraction have been studied in [1]. However, as a result of a sufficiently large extinction length, the surface effects were not investigated. Moreover, in most of the previous works it was assumed that the main contribution of inelastic scattering processes of x-rays is due to the scattering by the bulk acoustic modes of thermal vibrations. In a recent paper theoretically was studied the bulk and the surface excitations [2].

Using grazing incidence diffraction (GID) technique an experiment was carried out at the beamline W1. Different behavior was found for a pure GaAs crystal and a C-doped p-GaAs wafer. The general features of the GID method for investigations of the near surface properties of solids have been described elsewhere [3]. As in ordinary GID scattering the Bragg reflection is observed corresponding to a reciprocal lattice vector H. At the same measurement TDS is excited also at another reciprocal lattice vector G. As the main reflection H (2 2 0) is considered. The crystal surface was parallel to the [1 0 0]. TDS is observed near the two reciprocal-lattice points G (6 2 0) and (7 1 0) separated by the phonon wave vector q. The simultaneous excitation of H and $G+q$ requires precise energy calibration. In the described scattering geometry the incident energy is in the range of 9.5-10.5 keV. During TDS-experiment two detectors are used: a mono-energetic detector for the elastically scattered beam and an energy-dispersive detector for the inelastically scattered beam (in order to separate TDS and Compton scattering).

The left figure shows a schematic layout of the experimental setup. Here k_0 and $k_i = k_0 + H$ are projections of the respective wave vectors onto the crystal surface with respect to the incident and diffracted beam, respectively. $k = k_0 + G+q$ is the projection of the inelastically scattering x-rays onto the crystal surface. Both H and G are parallel to the surface. The reciprocal lattice vector G is selected in such way that the distance from the end of this vector to the Ewald sphere with a radius $k = k_0 = k_i = k_f$ is in the order of the phonon wave vector q. Under these conditions multiple-wave elastic diffraction scattering does not almost occur. However, one can detect a strong one-phonon inelastic scattering in the direction of k. The following general case is considered: both incident and diffracted beams angles are smaller or larger than a critical angle for the total external reflection α_c. For the fixed incident angle, α_i, one can register diffuse scattering for different angles α_{TDS} of the inelastically scattered beam and detect the TDS signal from different penetration depths.

This work was supported by DAAD. We would like to acknowledge the support given by Oliver Seeck during the measurements at the beamline W1 at HASYLAB and FBH-Berlin for providing the samples.
Figures: Schematic view of the TDS experiment and the inelastic scattering geometry in reciprocal space for GID conditions; TDS and D are the inelastically scattered and diffracted beam detectors, respectively (left).

Experimental curves for diffracted beam (220) and the TDS yield near reciprocal lattice vector (620) for a GaAs-wafer (top right); the same curves (bottom right) for p-GaAs (C=2e16 cm⁻³).

References