Influence of chain architecture on self-organization in polymers with semifluorinated side chains

D. Jehnichen, D. Pospiech, P. Friedel, A. John and S. Kummer

Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany

Structural segments consisting of alkyl and perfluoroalkyl groups covalently linked by a C-C bond, called semifluorinated (SF) compounds, are known for their microphase separation resulting in highly ordered bulk structures [1]. The microphase separation is caused by the thermodynamic immiscibility between alkyl and perfluorinated alkyl segments. The goal of the project was to evaluate the influence of SF-side chains on the bulk structure and the surface properties of polysulfones (PSU’s) with different chain structure. Thus, segmented block copolymers consisting of PSU and semifluorinated aromatic polyester (SF-PES) segments as well as PSU’s having SF-chains randomly distributed over the polymer backbone were synthesized with a different concentration of side chains (chain architecture) (compare Fig.1). Oxydecylperfluorodecyl side chains were used because of their strong tendency for self-organization.

Fig. 1: Schematic representation of the chain architectures; left: segmented block copolymers with PSU and SF-PES segments; right: PSU with randomly distributed SF-side chains

The structure of PSU-SF-PES block copolymers (BCP) is determined by microphase separation which occurs between the amorphous PSU phase and SF-PES domains at very low molecular weights of SF-segments having only a few monomeric units. The reasons therefore are the high interaction parameter between SF-PES and PSU ($\chi \approx 13.6$) [2] as well as the high tendency for self-organization of the SF-PES itself, driving to a highly ordered bulk structure. The structure of the SF-poly(p-phenylene isophthalate) was reported earlier [3]. By a combination of methods, the structural changes upon heating and cooling could be understood [4,5]. Phase separated BCP’s of PSU and the SF-PES should have both, the glass transition of PSU as indication of an amorphous matrix, as well as the thermal transitions of the SF-PES [5]. Based on the results obtained by DSC, SAXS, and TEM, a structural model was proposed recently [2,6] showing a random distribution of well-ordered SF-domains within an amorphous matrix.

SAXS curves of segmented BCP’s show two scattering maxima at d_1 being exactly the layer distance obtained in the pure SF-PES (Fig. 3). The larger scattering maximum d_2 refers to the periodic distance between the SF-PES domains in the PSU matrix. A correlation between this distance and the domain size was postulated recently [6]. The random SF-PSU’s show a somewhat different structure compared to the BCP (Fig. 2, Tab. 1). In DSC investigations, only a glass transition can be found, without indications of side chains melting and isotropization. The T_g’s strongly depend on the structure of the side chains. The T_g of PSU with COOH-side chains increases slightly with the side chain concentration referring to higher intermolecular interactions. In contrast, the T_g’s of PSU with SF-side chains drop down significantly with increasing side chain concentration, showing that the SF-side chains alter the amorphous rigid structure of unmodified PSU.

Tab. 1: Layer distances d in the SF-domains obtained for random SF-PSU’s with different molar concentration of SF-side chains c_{SF} (after the 1st heating to 300 °C and cooling to 25 °C) [7]

<table>
<thead>
<tr>
<th>c_{SF} / (mol%)</th>
<th>Structure at RT?</th>
<th>d / (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td>yes</td>
<td>5.2</td>
</tr>
<tr>
<td>42</td>
<td>yes</td>
<td>5.3</td>
</tr>
<tr>
<td>33</td>
<td>no</td>
<td>5.5</td>
</tr>
<tr>
<td>25</td>
<td>no</td>
<td>6.6</td>
</tr>
<tr>
<td>0</td>
<td>no</td>
<td>--</td>
</tr>
</tbody>
</table>
BCP with PSU and SF-PES segments show a stronger tendency of self-organization of SF-side chains than PSU’s with randomly distributed ones, which can be understood in terms of a lower distance and therefore higher interaction of the fluorinated parts in the BCP, leading to a higher ordered structure in the bulk.

References