

Temperature dependent EXAFS study of $\text{Mn}_5\text{Si}_3\text{C}_x$

C. Sürgers, G. Fischer

Physikalisches Institut, Universität Karlsruhe, Wolfgang-Gaede-Str. 1, D-76128 Karlsruhe, Germany

The intermetallic compound Mn_5Si_3 exhibits antiferromagnetic order at temperatures below 100 K. The magnetic transition is accompanied with an orthorhombic distortion of the hexagonal unit cell [1]. Further structural and magnetic analysis on single-crystalline samples have shown that a second antiferromagnetic transition occurs at 66 K together with a change of the c axis dimension [1]. Remarkably, the antiferromagnetic Mn_5Si_3 becomes ferromagnetic by doping with carbon [2]. For $\text{Mn}_5\text{Si}_3\text{C}_x$ films prepared by magnetron sputtering at substrate temperatures of $T_S = 740$ K a maximum Curie temperature of $T_C = 350$ K was found for $x \approx 1$ and the local magnetic Mn moments were determined by zero-field NMR measurements [3, 4]. Earlier structural investigations performed at room temperature provided strong evidence that the carbon is incorporated in the octahedral voids of the hexagonal D_{8_8} structure (space group $\text{P}6_3/\text{mcm}$) surrounded by Mn atoms [5]. However, it is not clear whether or not a structural phase transition occurs below room temperature similar to the parent Mn_5Si_3 compound. In this respect, conventional x-ray powder diffractometry is an inadequate method to check for a small orthorhombic distortion, since only the peak intensities are slightly changed which are furthermore reduced by the film texture. Therefore, we have started an extended x-ray absorption fine structure (EXAFS) study on $\text{Mn}_5\text{Si}_3\text{C}_x$ to investigate the local structural properties in detail. A previous EXAFS study performed at ambient temperature suggested a change of the local Mn environment by the incorporation of carbon in the octahedral voids [4]. However, a detailed analysis of the data in terms of a multiple scattering approach by FEFF6 code was not successful and was presumably hampered by the large thermal attenuation of the EXAFS oscillations.

200-nm thick polycrystalline Mn_5Si_3 and $\text{Mn}_5\text{Si}_3\text{C}_{0.75}$ films were prepared by magnetron sputtering on (1-102)-oriented sapphire substrates at a substrate temperature $T_S = 740$ K. In addition, an Mn_5Si_3 powder sample was prepared by sintering a mixed powder of the elemental constituents at 1170 K for eight days for comparison with the Mn_5Si_3 film. X-ray absorption spectra at the Mn K-edge were taken at photon energies 6400 – 7500 eV at beamline A1 in the two-crystal mode using a Ge fluorescence detector. Contribution due to the Fe K fluorescence radiation from the background was minimized by electronic discrimination of the Ge detector signal. Multiple EXAFS scans were taken at temperatures $T = 5$ K, 82 K, and 150 K employing a liquid He flow-cryostat. All spectra were calibrated with an Mn foil (K-edge at 6537.7 eV) and were corrected for self-absorption effects according to Ref. [6] prior to further data processing. The obtained EXAFS oscillations $\chi(k)k^3$ were Fourier transformed into R space by application of a Bessel window.

Fig. 1 shows the Fourier transforms FT (χk^3) of the different $\text{Mn}_5\text{Si}_3\text{C}_x$ samples at various temperatures T . For $T = 150$ K all FT show a similar behavior indicating a similar short range order around Mn in the hexagonal D_{8_8} structure. This is also observed for $T = 82$ K indicating that the orthorhombic distortion of the crystallographic a and b axes reported for single-crystalline samples [1] is very small in the investigated polycrystalline samples. In contrast, the data measured at $T = 5$ K exhibit clear differences when comparing the FT of the films with the FT of the powder sample, in particular around $R = 3.7$ Å. However, the qualitative behavior of FT(R) of the films seems to be independent of temperature. This demonstrates that the films exhibit do not exhibit an orthorhombic distortion - even not for the undoped Mn_5Si_3 film - in contrast to the bulk Mn_5Si_3 powder sample. Moreover, the local structural order of Mn_5Si_3 films is similar to $\text{Mn}_5\text{Si}_3\text{C}_{0.75}$ films. For a more detailed analysis the experimental data should be compared with the FT derived from a theoretical calculation of the EXAFS signal by a multiple scattering approach using FEFF6 code [7]. Preliminary calculations have been performed for the films, see Fig. 1. For this purpose we have used the lattice parameters measured by x-ray diffraction at $T = 25$ K assuming a hexagonal D_{8_8} structure. Thermal broadening was taken into account by application of the Debye model with a Debye temperature $\theta_D = 400$ K. The agreement between the experimental data at $T = 5$ K and the FEFF calculation is very good for the Mn_5Si_3 film whereas for the carbon doped $\text{Mn}_5\text{Si}_3\text{C}_{0.75}$ film differences are found around $R = 3.8$ Å. Further data analysis is necessary to refine the structural parameters by successive fitting the theoretical FEFF calculations to the experimental data.

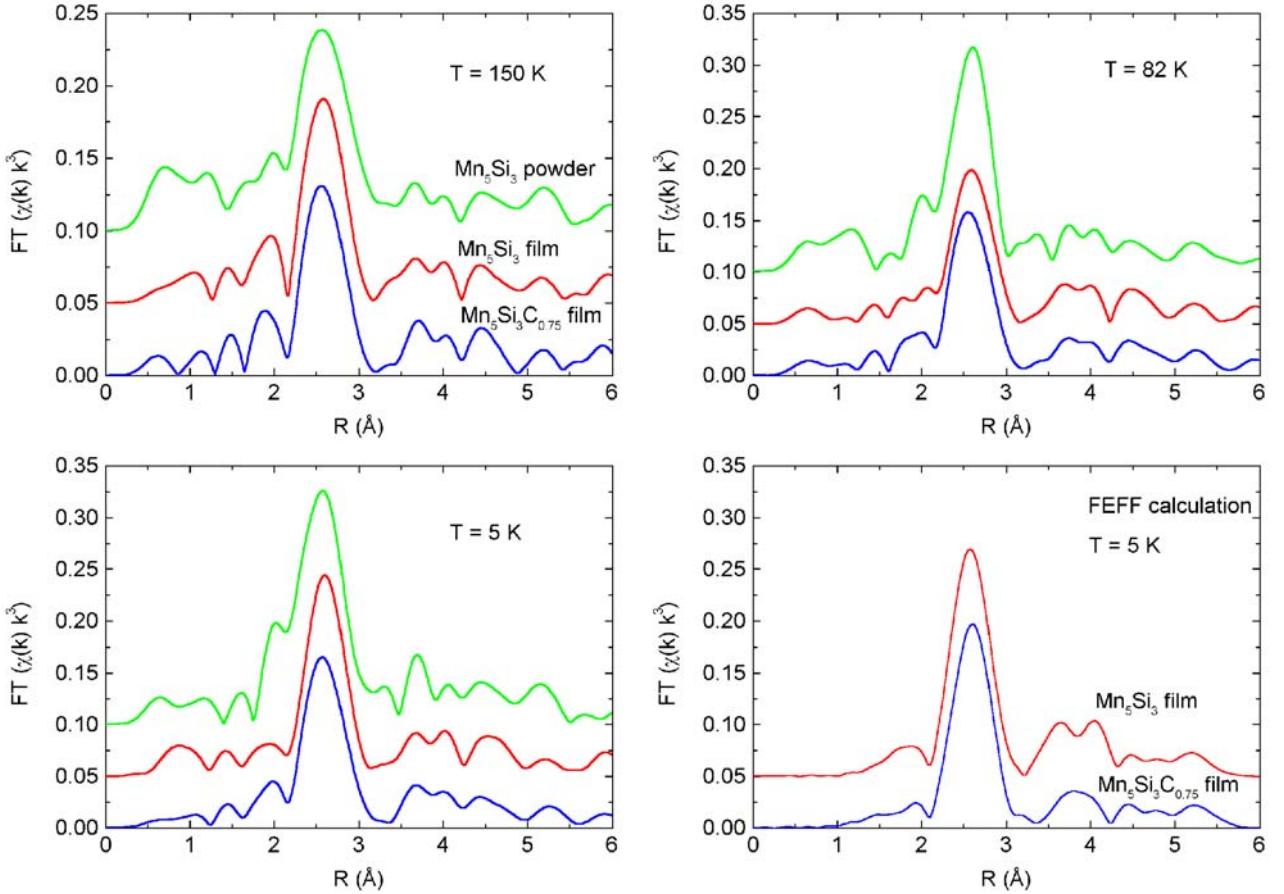


Figure 1: Fourier transforms of the Mn K -edge EXAFS oscillations $\chi(k)k^3$ for different $\text{Mn}_5\text{Si}_3\text{C}_x$ samples at various temperatures T . In each panel the upper two curves are successively shifted upward by 0.05 for clarity. Also shown are the transforms for Mn_5Si_3 and $\text{Mn}_5\text{Si}_3\text{C}_{0.75}$ at $T = 5$ K derived from a multiple scattering calculation of the EXAFS signal using FEFF6 code.

References

- [1] P.J. Brown and J. B. Forsyth, J. Phys.: Condens. Mat. 7, 7619 (1995) and references therin
- [2] J. P. Sénaire, J. P. Bouchaud, and R. Fruchart, Bull. Soc. Fr. Mineral. Cristallogr. 90, 537 (1967)
- [3] M. Gajdzik, C. Sürgers, M. Kelemen, and H. v. Löhneysen, J. Appl. Phys. 87, 6013 (2000)
- [4] C. Sürgers, H v. Löhneysen, M.T. Kelemen, E. Dormann, and M.S.S. Brooks, Journ. Magn. Magn. Mater. 240, 383 (2002)
- [5] E. Parthé, W. Jeitschko, and V. Sadagopan, Acta Cryst. 19, 1031 (1965)
- [6] R. Castañer and C. Prieto, J. Phys. III France 7, 337 (1997)
- [7] J.J. Rehr and R.C. Albers, Rev. Mod. Phys. 72, 621 (2000)