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The persistent luminescence materials are drawing more and more attentions because of a
constantly growing market for their applications. As the new generation of long afterglow
phosphors, lanthanide ion doped alkaline earth silicates or aluminates yield much better
characteristics, such as longer duration time, brighter luminosity and improved chemical stability,
than the conventional sulfide materials used earlier [1]. Although some new materials are already in
commercial use, the mechanism of the persistent luminescence are still under discussion, especially
the nature of the different hole traps or electron tra aps and their roles in the luminescence process. In
this work, the luminescence from Eu’" and Dy’  codoped Sr,MgSi,O; was investigated under
synchrotron radiation excitation as an attempt to shed some light on the luminescence mechanism
of this newly developed blue-emitting long afterglow phosphor.

The powder sample, Sr;MgSi,O7:Eu”"(0.5%), Dy’ (8%), was prepared by solid state reaction
method in reducing atmosphere. The spectroscopic measurements were performed at the
SUPERLUMI station of HASYLAB at DESY. The emission spectra are not corrected for the
sensitivity of detection system.

The emission spectra shown in Figure 1 present two bands peaking at 477 and 578 nm when
excited by 170 nm (curve a and b). The 477 nm broad band with FWHM of 50 nm corresponds to
the transmon from the lowest crystal field components of the 4f°5d" excited state configuration to
the *S;, (4f") ground state of Eu®" ions, which supposedly occupy the strontium sites in this
akermamte structure host [2]. The 578 nm emission arises from 1ntraconﬁgurat10nal transition
F9/29 H13/2 4 ) of Dy ions. It should be noted that the transition from F9/2 to the ground state
H15/2 of Dy located around 475 nm, overlap and are obscured by the strong Eu®" d-f emission,
probably causing the asymmetry of 477 nm band. Under 300 nm excitation (curve ¢ and d), the
intensity of 578 nm band decreases drastically (invisible in the Figure 1, but still observable in the
enlarged scale), meanwhile the 477 nm band is more symmetrical. The emission at room
temperature (RT) has the same behaviour as at low temperature, except for the much lower
intensity due to a strong thermal quenching effect like in singly Eu”" doped Sr;MgSi»O;[2].In the
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Figure 1: Emission spectra of Sr,MgSi,0.: Figure 2: Excitation spectra of Sr,MgSi,O
Eu”, Dy*" under different excitation (170 and Eu”, Dy* monitoring different emissions

300 nm) at 7.6 K and RT. (477 and 578 nm) at 11 K.
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The long afterglow emission spectra
were also measured under 170 nm
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irradiation at different temperatures Figure 3. Long afterglow of S,MgSi,0,Eu”, Dy

. der 170 nm irradiation at different temperatures
(see Figure 3). The long afterglow un :
emission exists only at temperature (measured after closing beam-shutter for ~30

higher than 200 K, and its intensity seconds at each temperature).

increases with rising temperature, at

least until 280 K. The long afterglow emission spectra consists of the similar band around 480 nm
as that observed in emissmn | spectra by 300 nm excitation. This indicates that the long afterglow is
due to d-f trans1t10n at Eu”" sites. The model supposed for the phosphorescence mechanism in
SrALO4: Eu** " [4] can be applied for this system. In this model, the holes trapped at Dy’ sites
are thermally released and can recombine with the electrons trapped at Eu®" sites, resulting in the
long afterglow emission. However, for the detailed information about the traps and the dynamics
involved in this process, further investigations involving the thermoluminescence spectra and decay
measurements of different emissions are indispensable.
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