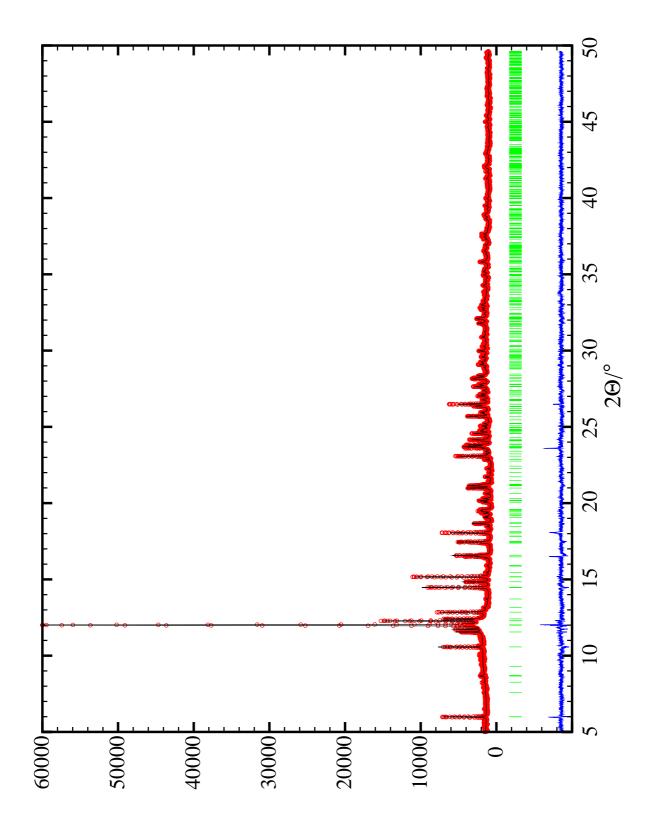

$\alpha \rightarrow \beta$ -NiMoO₄ transition at high temperature

H. Ehrenberg, M. Knapp, H. Weitzel

Institute for Materials Science, Darmstadt University of Technology Petersenstr. 23, D-64287 Darmstadt


 α -NiMoO₄ [1] transforms into the high-temperature modification β -NiMoO₄ at about 700°C. This phase transition is reconstructive and results in a different coordination for the molybdenum ions: All Mo-ions are octahedrally coordinated in the α -phase, but tetrahedrally in β -NiMoO₄. Based on the structure model of β -(Fe,Co)MoO₄ [2], obtained from an X-ray single crystal structure analysis, the structure of β -NiMoO₄ between 700°C and 925°C was refined by the Rietveld method using the software package WINPLOTR. Powder diffraction data were collected in steps of 25°C at beamline B2, using the STOE capillary furnace and the on-site readable image-plate detector OBI [3]. A representative pattern, i. e. intensity versus diffraction angle 2Θ (in °), for the β -phase at 725° C is shown together with calculated profiles and difference curve on the next page. The selected wavelength was $\lambda = 0.69962(1)$ Å. Impurities between 0.5-1 weight-% NiO and between 2.5 and 3 weight % MoO₂ have been taken into account. α - and β -phases are isosymmetric in space group C_2/m with the following unit cell parameters: a = 9.5670(5) Å, b = 8.7391(4) Å, c = 7.6502(3)and $\beta = 114.243(3)^{\circ}$ for α -NiMoO₄ at 25°C and a = 10.1588(4) Å, b = 9.2135(4) Å, c = 7.0034(2) Åand $\beta = 107.099(2)^{\circ}$ for β -NiMoO₄ at 700°C, respectively. The estimated standard deviations are calculated in agreement with [4]. The $\alpha \to \beta$ phase transition is accompanied by a discontinuous increase in the unic cell volume of 5.5%. The largest thermal expansion is along the b-axes for both phases, but the monoclinic angle is decreasing with temperature for the α -phase in contrast to a nearly constant value for the high-temperature structure, see figure below.

The lattice parameters of α -and β -NiMoO₄ are normalized to their values at 25°C and 700°C, respectively, as given above. The rather fast data collection rate of about 10 minutes per temperature point (for reaching equilibrium and measuring a full diffraction pattern) allows for very reliable investigations of subtle structural details of phase transitions and chemical reactions.

References

- [1] H. Ehrenberg, I. Svoboda, G. Wltschek, M. Wiesmann, F. Trouw, H. Weitzel, H. Fuess, J. Magn. Magn. Mater. 150 (1995) 371-376.
- [2] H. Ehrenberg, I. Svoboda, M. Wiesmann, H. Weitzel, Acta Cryst. C55 (1999) 1383-1384.
- [3] M. Knapp, V. Joco, C. Baehtz, H. H. Brecht, A. Berghaeuser, H. Ehrenberg, H. von Seggern, H. Fuess, Nucl. Instr. & Meth. A (2003), in print.
- [4] J. F. Berar, P. Lelann, J. Appl. Cryst. 24 (1991) 1-5.

