Amorphouslike diffraction pattern in solid metallic titanium

Laboratory of New-Structured Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P.R. China
1 Department of Physics, College of Mathematics and Physics, Zhejiang Normal University, Jinhua, 321004, Zhejiang, P.R. China.
3 HASYLAB am DESY, Notkestrasse 85, D-22603 Hamburg, Germany.
4 Department of Physics, Technical University of Denmark, DK-2800 Lyngby, Denmark.

Amorphouslike diffraction patterns of solid elemental titanium have been detected under high pressure and high temperature using in situ energy-dispersive x-ray diffraction and a multi-anvil press. The onset pressure and the temperature of formation of amorphous titanium is found to be close to the α-β-ω triple point in the P-T phase diagram. Amorphous Ti has been found to be thermally stable up to 1250 °C for at least 3 min. at some pressures. By analyzing the conditions for producing amorphous elemental Zr and Ti, we observed a multi-phase-point amorphization phenomenon for preparing single-element bulk amorphous metals. The results reported may open a new way to preparing single-element bulk amorphous metals with a high thermal stability.

References