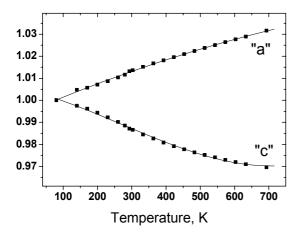
A difference in thermal behaviour of AgReO₄ and CuReO₄

D.Mikhailova¹, H.Ehrenberg¹, H. Fuess¹, D.Trots¹, C.Baehtz²


¹Institute for Materials Science, Darmstadt University of Technology, Petersenstr. 23, D-64287 Darmstadt

²Hamburger Synchrotronstrahlungslabor, Notkestr. 85, D-22603 Hamburg

Perrhenates of Ag(I) and Cu(I), MReO₄ with M = Ag or Cu, have a number of similar physical-chemical properties. They melt congruently at a relatively low temperature, the vapor at high temperature over the compounds consists of MReO₄, (MReO₄)₂ and Re₂O₇ or MReO₄, (MReO₄)₂, O₂ and Re₂O₇ molecules, and the enthalpies of formation of (MReO₄)₂(g) from MReO₄ (l) are nearly the same in the error interval [1,2].

AgReO₄ and CuReO₄ crystallize in tetragonal symmetry, AgReO₄ has a scheelite-type structure (S.G. $I4_1/a$) [3], CuReO₄ represents its own CuReO₄-structure type ($I4_1cd$) [1]. In both compounds Re-atoms are tetrahedrally coordinated and isolated from each other. Ag atoms occupy dodecahedra connected by edge-sharing. The structure of CuReO₄ represents a three-dimensional framework formed by corner-shared tetrahedra of CuO₄ and ReO₄. There is a number of large channels between these tetrahedra, which can cause quite different behaviour of thermal expansion in comparison with AgReO₄.

Low- and high-temperature structure investigations of AgReO₄ and CuReO₄ were performed at beamline B2 [4] in Debye-Scherrer mode using the on-site readable image-plate detector OBI [5], and a closed-cycle cryostat [6] or a STOE furnace. All diffraction patterns have been analyzed by using the software package WinPLOTR [7]. For both structure models, a full-profile Rietveld refinement of all general atomic positions was performed with an isotropic approximation for the thermal displacement parameters, which were refined independently for each kind of cations and for all oxygen atoms together.

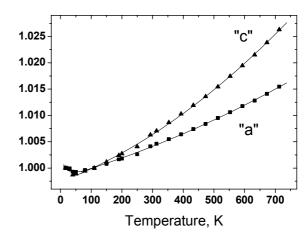


Figure 1. Relative change of lattice parameters of CuReO₄ (left) and AgReO₄ (right) vs.temperature.

Whereas a positive thermal expansion along "a"- axis and a negative expansion along "c" – axis was found for CuReO₄, a positive expansion along "a" and "c" direction was detected for AgReO₄ over the same temperature interval (Fig.1). The increasing temperature leads to a very strong distortion of CuO₄-tetrahedra around the channels in the structure of CuReO₄ (Fig.2 and 3), but the average distances Cu-O and Re-O do not change significantly. ReO₄-tetrahedra do not undergo such a distortion. The change of angles (Cu-O-Re), increasing of O1-O2- and decreasing of the O2-O3 - interatomic distances in these CuO₄-tetrahedra is responsible for the positive expansion in the "a" and "b" and the negative one in "c" direction. In the AgReO₄ structure the positive thermal

expansion in three crystallographic directions is due to increasing average Ag-O –distances in the AgO_8 -polyhedra (Fig.2), whereas the average Re-O distance remains also nearly constant .

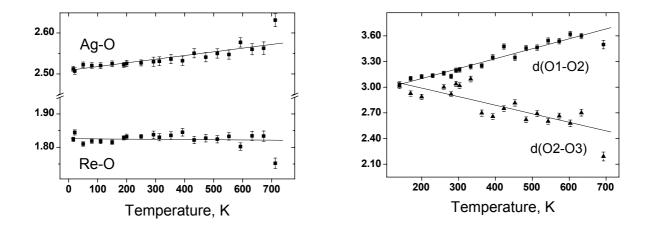


Figure 2. Average interatomic distances (in Å) in AgReO₄ (left) and selected O-O-distances in CuO₄-tetrahedra, forming the channels in the CuReO₄ structure (right) vs. temperature.

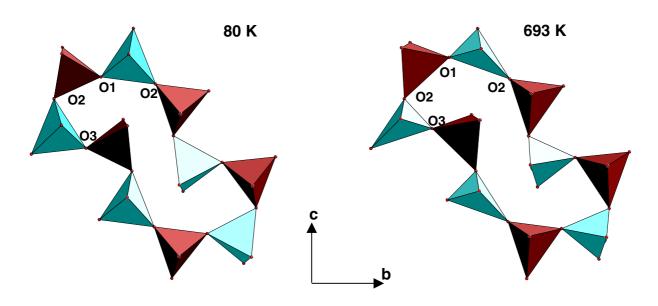


Figure 3. 10–membered-rings in the framework of MO₄-tetrahedra (CuO₄ – blue, ReO₄ – brown) in CuReO₄ at 80 and 693 K, respectively.

This work is financially supported by DFG (FU125/42).

References

- [1] D. Mikhailova, H. Ehrenberg, H. Fuess, J. Solid State Chem., 179 (2006) 2004-2011.
- [2] Ye. K. Kazenas, Vaporization thermodynamics of double oxides, Moscow: Nauka, 2004, 551 s (in Russ.).
- [3] D. Yu. Naumov, A. V. Virovets, S. V. Korenev, A. I. Gubanov, Acta Crystallogr. C55 (1999) 8.
- [4] M. Knapp, C. Baehtz, H. Ehrenberg, H. Fuess, J. Synchrotron Rad. 11 (2004) 328-334.
- [5] M. Knapp, V. Joco, C. Baehtz, H. H. Brecht, A. Berghaeuser, H. Ehrenberg, H. von Seggern, H. Fuess, Nucl. Instrum. Meth. A 521 (2004) 565-570.
- [6] J. Ihringer, A. Koester, J. Appl. Cryst. 26 (1993) 135-137.
- [7] T. Roisnel, J. Rodriguez-Carvajal, Mater. Sci. Forum 378-381 (2001) 118-123.