High energy 4f'' and 4f'°5d levels of Er®** in BaF,
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The interest in the VUV spectroscopy of wide bandgap materials has been generated by applications such as
scintillators, solid state lasers and mercury free phosphors. Preliminary, low resolution experiments
performed on Er-activated BaF,, at Superlumi station of Hasylab, DESY, Hamburg, Germany, have already
been published in 1999 [1]. Nevertheless, since the interpretation given therein did not take into account the
possibility that some of the observed VUV and UV emission lines may originate in the hypothetical highly
lying doublet state *F(2)s, [2,3], new experiments have been planned and performed in 2007.

In this report we will present direct evidence that the 2F(2)5/2 state levels do exist at about 63,400 cm™, as
predicted by theory [2]. As presented earlier, the competition between Er-bound exciton and Er’* 4f'°5d,
4f'" (*F(2)s1,) levels is responsible for strong variations of the complex pattern of VUV, UV and VIS
emission lines with relatively small changes in the excitation Wavelength [3]. In this report we will also
demonstrate that competition between “F(2)s, and two states of the 4f'°5d(e) configuration (HS, high spin;
and LS, low spin) is responsible for the strong variation of this pattern with temperature.
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i BaF,:Er, RT and 10 K i monochromator and photomultiplier (for the description of
excitation at 153 nm (d-level) the experimental set-up see [4,5].

In Fig. 1 we show the emission spectra under the excitation
at one of the three d-bands (153, 144, 134 nm) associated
with the spin-allowed transitions from the Er’ ground 4f''
level (“I;s») to the LS (low spin) levels of the 4f'°5d
configuration. Since the 10Dq crystal field splitting is large
(about 16,000 cm™) and the energy differences between
these levels are much smaller (4500 and 4600 cm’,
respectively) we assign them, following van Pieterson et al
[6], to states in which one electron of the original 4f'' ground state configuration is moved to the same d(e)
orbital while the remaining 10 f-electrons are left in the °Ig, I, °I, states of the Ho®" ion, respectively. We
note that at RT, under the excitation into the wavelengths falling between the LS d-bands almost all of the
VUV and UV emission lines below 380 nm disappear [1,3]. The explanation involves an Er-bound exciton
(see [1,3]) and follows the idea of Yang and DeLuca who proposed that the energy transfer from the host to
the ion is accompanied by a large energy loss due to the lattice relaxation [7]. We also note that most, but
not all, of these lines disappear at 10 K.
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Excitation spectrum Figure 2: Uncorrected excitation spectrum at 10 K, res.
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- In Fig. 2 we present the excitation spectrum of the HS
emission at 163.5 nm (see blue line in Fig. 1) at 10 K. The
detection monochromator was set at 165 nm to enable a
good measurement with no scattered excitation light of the
HS excitation band at 163.5 nm. The spectrum shows,

. oL LY beside the HS band, two high intensity, saturated bands at
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quenched, most likely, by competing excitonic transitions at
125-135 nm. These three bands are assigned to transitions
involving I, 15, I, states of the 4f" configuration of the Ho®" ion, left behind by an electron promoted to

LS (5de,l,)

2F(2)s
?

wavelength, nm

1015



the d(e) orbital at the Er’" ion. The most interesting, and previously unreported feature is, however,
represented by weak bands at about 156.6, 157.5 and 158.5 nm. These bands must be due to the *F(2)s,,
state, energy of which has been calculated to be 63,345 cm™ [2]. In addition we observe a set of three
bands, labeled by a question mark in Fig. 2, at 135.9, 136.6 and 137.3 nm that may, presumably, be due to
one of the other unreported doublets, such as 2G(2)9/2, 2G(2)7, F(1)sp, and “F(1)7» energies of which are
unknown at this time.

It is interesting to note that the presence of the intermediary level between the two d-levels must facilitate
the fast relaxation between them thus promoting the emission from the lowest HS level. Nevertheless, since
one can reasonably expect large equilibrium position difference between the two states (one of which
involved d-orbital while the other does not), the energy difference between the minimum energies of the two
parabolas may be much less than the difference between the corresponding vertical transitions.
Consequently, at high enough temperatures one can expect some emissions in the range of 300-400 nm due
to transitions from the *F (2)s/, level to a number of doublet levels of the Er’* ion at 25-40,000 cm™ that
disappear at lower temperatures, as observed.

Unfortunately we have not been able to measure the appropriate spectra at RT and we are left with the less
conclusive evidence from the relatively low quality experiments at 10 K shown in Fig. 3.

— Figure 3: Emission and excitation spectra of BaF,:Er at
i 10 K. Black line: emission, res. 1.1 nm, step 0.1 nm,

] excitation 152 nm. Blue line: excitation, res. 0.32 nm,
EMISSION | step 0.1 nm, emission set at 177 nm. Red line:
excitation, res. 0.32 nm, step 0.1 nm, emission set at
184 nm. Temperature was 10 K.

| EXCITATION'
2
L F5/2 blue

d(HS) 1

The emission spectrum shown in Fig. 3 was measured at
wavelengths above the dominating emission band at
163.5 nm corresponding to transition between the HS d-
level and the ground state of the Er’" ion, “I;s». The
ML L S A spectrum shows two lines, at 176.6 and 184 nm. The
130 150 170 190 184 nm line is 6800 cm™ below the 163.5 nm line so it
wavelength, nm must be due to the transition from the HS d-level to the
second lowest 4f'" level of the Er’", *I;3,. The second
band, at 176.6 nm (56,600 cm™") may, therefore, correspond to the transition originating at *F(2)s,, since
56,600 + 6800 = 63,400 cm™', 157.7 nm. The blue and red lines show excitation spectra of these two
emission bands at 176.6 and 184 nm. We note the larger contribution of the blue spectrum at wavelengths
corresponding to two doublets at 157 and 137 nm, identified in Fig. 2.
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