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1. Introduction

1.1. The PNI library stack

libpnicore is one of the PNI libraries developed within the framework of the HDRI project.
As shown in Fig. 1.1 libpnicore it is the foundation for all libraries in the stack. None of
them can be used without it. libpnicore provides the basic data structures used by all other
PNI libraries. This includes

• well defined data types

• multidimensional arrays

• configuration facilities

• type erasures.

1.2. How to read this manual

For a new user the best way to read this manual is from beginning to the end. One may can
omit the next chapter about installation of the library if this is done by your local system
administrator. In any case, a new user should should definitely start with Chapter 3.

The library makes heavy use of C++11 features. There are plenty of websites on the
internet explaining those new features. For an experienced C++ programmer the Wiki site[3]
describing the new features for C++11 might be enough. However, new users with less
experience in modern C++ may should purchase one of the excellent books available on this
language.

A reader already familiar with libpnicore may uses this guide as a short reference to the
most important features. In any case, more detailed information about each class can be
found in the API documentation.
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1. Introduction

libpnicore

libpniio libpnialgorithm libpnigui

C++ libraries

native C++
applications

Python
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C/Fortran
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Python
applications

C/Fortran
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Figure 1.1.: The PNI library stack is a collection of C++ libraries developed with the intention to

simplify the process of writing application in the PNI field. libpnicore, the library described in this

manual is the foundation of this stack. It provides all the basic data structures and facilities used by

all other libraries.
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2. Installation

Before you building libpnicore from sources one should first check if pre-built binary pack-
ages are available. Building the library from the sources requires a certain level of expertise
which not all users posess. As libpnicore is mostly a template library only a few non per-
formance critical components have to be compiled. Therefore, custom builds of the libraries
binaries are not necessary in order to get optimum performance.

2.1. Installing pre-built binary packages

Binary packages are currently available for the following platforms

• Debian/GNU Linux

• Ubuntu Linux

2.1.1. Debian and Ubuntu users

As Debian and Ubuntu are closely related the installation is quite similar. The packages are
provided by a special Debian repository. To work on the package sources you need to login
as root user. Use su or sudo su on Debian and Ubuntu respectively. The first task is to add
the GPG key of the HDRI repository to your local keyring

> wget -q -O - http://repos.pni-hdri.de/debian_repo.pub.gpg | apt-key add -

The return value of this command line should be OK. In a next step you have to add new
package sources to your system. For this purpose go to /etc/apt/sources.list.d and
download the sources file. For Debian use

> wget http://repos.pni-hdri.de/wheezy-pni-hdri.list

and for Ubuntu (Precise)

> wget http://repos.pni-hdri.de/precise-pni-hdri.list

Once you have downloaded the file use

> apt-get update

to update your package list and

> apt-get install libpnicore1 libpnicore1-dev libpnicore1-doc

to install the library. Dependencies will be resolved automatically so you can start with
working right after the installation has finished.
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2. Installation

2.2. Install from sources

If your OS platform or a particular Linux distribution is currently not supported you have to
build libpnicore from its sources. As this process usually requires some expert knowledge
keep be prepared to get your hands dirty.

2.2.1. Requirements

For a successful build some requirements must be satisfied

• gcc >= 4.7 – since version 1.0.0 libpnicore requires a mostly C++11 compliant com-
piler. For the gcc familiy this is 4.7 and upwards

• BOOST [1] >= 4.1

• doxygen [5] – used to build the API documentation

• cmake [2] >= 2.4.8 – the build software used by the libpnicore

• pkg-config [6] – program to manage libraries

• cppunit [4] – a unit test library used for the tests

2.2.2. Obtaining the sources

There are basically two sources from where to obtain the code: either directly from the Git
repository on Google Code or a release tarball. The former one should be used if you not
only want to use the library but plan to contribute code to it. The latter one is the suggested
source if you just want to use the library. As Google Code ceased its download service in
January 2014 the tarballs are provided via Google Drive.

For the next steps we assume that the code from the tarball is used.

2.2.3. Building the code

Once downloaded unpack the tarball in a temporary location.

> tar xzf libpnicore*.tar.gz

which will lead to a new directory named libpnicore. As we use cmake for building the
library, out of place builds are recommended. For this purpose create a new directory where
the code will be built and change to this directory

> mkdir libpnicore-build

> cd libpnicore-build

Now call cmake with a path to the original source directory

> cmake ../libpnicore

A subsequent make finally build the library

> make

This may take a while. Actually building the library is quite fast as libpnicore is mostly
a template, and thus header-only, library. However, building the test suite is rather time
consuming.
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2.2. Install from sources

2.2.4. Testing the build

Once the build has finished you should definitely run the tests. For this purpose change to
the test subdirectory in the build directory and run the test script

> cd test

> ./run_tests.sh

The output is currently a bit crude but there should be 0 failures for all tests.

2.2.5. Installation

If the build has passed the test suite libpnicore can be installed from within the build
directory with

> make install

By default the installation prefix is /usr/local. If another prefix should be used the
CMAKE INSTALL PREFIX variable must be set when running cmake with

> cmake -DCMAKE_INSTALL_PREFIX=/opt/pni ../libpnicore

which causes the installation prefix to be /opt/pni.
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3. Using the library

3.1. Include files

To use libpnicore in code the appropriate header files must be included. In the simplest
case just use the core.hpp file

#include <pni/core.hpp>

which pulls in all the other header files required to work with libpnicore. Alternatively, the
header files for the different components provided by libpnicore can be used

#include <pni/core/algorithms.hpp> //basic algorithms

#include <pni/core/arrays.hpp> //multidimensional arrays

#include <pni/core/benchmark.hpp> //benchmark classes

#include <pni/core/configuration.hpp> //program configuration facilities

#include <pni/core/error.hpp> //exception management

#include <pni/core/type_erasures.hpp> //type erasures

#include <pni/core/types.hpp> //fundamental data types

#include <pni/core/utilities.hpp> //general purpose utilities

All classes provided by libpnicore reside within the pni::core namespace. If you do not
want to give the namespace explicitly for every type and function use

using namespace pni::core;

after including the required header files.

3.2. Building and linking

libpnicore provides a pkg-config file. In the case of a system wide installation this file is
most probably allready at the right place in the file system. One can easily check this with

>> pkg-config --libs --cflags pnicore

for a system wide installation you should get something like this

-lpniio -lhdf5 -lz -lboost_filesystem -lpnicore -lboost_program_options\

-lboost_regex -lboost_system

For installation locations which are not in the default paths of your system you may get some
additional -I and -L output pointing to the directories where the header files and the library
binaries are installed. If pkg-config complains that it cannot find a package named pnicore

then you most probably have to set PKG CONFIG PATH to the location where the pkg-config

file of your libpnicore installation has been installed.
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3. Using the library

3.2.1. From the command line

If a single simple program should be compiled the following approach is suggested

$> g++ -std=c++11 -O3 -oprogram program.cpp\

$(pkg-config --cflags --libs pnicore)

Please recognize the -std=c++11 option. libpnicore requires a state of the art compiler
with full support for C++11.

3.2.2. From within a Makefile

If make should be used to build the code add the following lines to your Makefile

CPPFLAGS=-g -O3 -std=c++11 -fno-deduce-init-list -Wall -Wextra -pedantic \

$(shell pkg-config --cflags pnicore)

LDFLAGS=$(shell pkg-config --libs pnicore)

This will set the appropriate compiler and linker options for the build.

3.2.3. With Scons

If you use SCons for building the code add the following to your SConstruct file

env = Environment()

env.AppendUnique(CXXFLAGS=["-std=c++11","-pedantic","-Wall","-Wextra"])

env.ParseConfig(’pkg-config --cflags --libs pnicore’)

The ParseConfig method of a SCons environment is able to parse the output of pkg-config
and add the flags to the environments configuration.

3.2.4. With CMake

Currently no cmake-package files are installed with the library. However, due to cmakes
pkg-config support autoconfiguration can still be done. In one of the toplevel CMakeLists.txt
files use

pkg_search_module(PNICORE REQUIRED pnicore)

to load the configuration for libpnicore from pkg-config. Furthermore we have to add the
header file and library installation paths to the configuration

link_directories(${PNICORE_LIBRARY_DIRS} ${HDF5_LIBRARY_DIRS})

include_directories(${PNICORE_INCLUDE_DIRS} ${HDF5_INCLUDE_DIRS})

Finally the library can easily be added to the build target with

target_link_libraries(mytarget ${PNICORE_LIBRARIES})

12



4. Data types

libpnicore provides a set of data types of well defined size and utility functions related to
type management. The basic header file required to use libpnicores type facilities is

#include <pni/core/types.hpp>

The data types provided by libpnicore include

1. numeric types with all their arithmetic operations

2. string types (currently only one member)

3. and utility types like binary, bool, and none.

All this types together are refered to as primitive types. The numeric types are ensured to
have the same size on each platform and architecture supported by libpnicore. They are
mostly typedefs to the types defined by the C standard library. However, the utility types
binary, bool, and none are unique to libpnicore and will be explained in more detail in
the last sections of this chapter.

Every type in libpnicore is associated with an ID represented by the type id t enu-
meration type. Additionally every type belongs to a particular type class defined by the
type class t enumeration type. Table 4.1 gives an overview over the primitive types pro-
vided by libpnicore and their corresponding type id t and type class t values.

4.1. Compile time type identification

To obtain the ID or class of a type at compile time use the type id map or type class map

type maps.

#include <pni/core/types.hpp>

using namespace pni::core;

//determine the type ID for a given type

type_id_map<float32>::type_id == type_id_t::FLOAT32;

//obtain the class of a particular type

type_class_map<float32>::type_class == type_class_t::FLOAT;

For IDs the other way around is also possible with the id type map

13



4. Data types

type class t:: data type type id t:: description

INTEGER

uint8 UINT8 8Bit unsinged integer
int8 INT8 8Bit signed integer
uint16 UINT16 16Bit unsigned integer
int16 INT16 16Bit signed integer
uint32 UINT32 32Bit unsigned integer
int32 INT32 32Bit signed integer
uint64 UINT64 64Bit unsigned integer
int64 INT64 64Bit signed integer

FLOAT

float32 FLOAT32 32Bit IEEE floating point type
float64 FLOAT64 64Bit IEEE floating point type
float128 FLOAT128 128Bit IEEE floating point type

COMPLEX

complex32 COMPLEX32 32Bit IEEE complex float type
complex64 COMPLEX64 64Bit IEEE complex float type
complex128 COMPLEX128 128Bit IEEE complex float type

STRING string STRING string type

BINARY binary BINARY binary type

NONE none NONE none type

Table 4.1.: An overview of the primitive data types provided by libpnicore.

#include <pni/core/types.hpp>

using namespace pni::core;

//determine the type for a given ID

id_type_map<type_id_t::FLOAT32>::type data = ...;

For numeric types there are also some other templates for a more detailed type classification

is integer type<T>::value true if T is an integer type
is float type<T>::value true if T is a floating point type
is complex type<T>::value true if T is a complex number type
is numeric type<T>::value true if T is any of the above types

4.2. Identifying types at runtime

The recommended way to deal with type information at runtime are the type id t enumer-
ations. At some point in time a program might has to determine the type ID of a variable
type or of the element type of a container. The basic facility to achieve this is the type id

function defined in pni/core/type utils.hpp. The usage of this function is rather simple
as shown here

#incldue<pni/core/types.hpp>

using namespace pni::core;

14



4.2. Identifying types at runtime

data type string representation

uint8 "uint8" , "ui8"
int8 "int8" , "i8"
uint16 "uint16", "ui16"
int16 "int16", "i16"
uint32 "uint32", "ui32"
int32 "int32", "i32"
uint64 "uint64", "ui64"
int64 "int64", "i64"
float32 "float32", "f32"
float64 "float64", "f64"
float128 "float128", "f128"
complex32 "complex32", "c32"
complex64 "complex64", "c64"
complex128 "complex128",

"c128"

string "string", "str"
binary "binary", "binary"
none "none"

Table 4.2.: Data types and their string
representations.

//one could use this with

auto data = get_data(...);

std::cout<<type_id(data)<<std::endl;

The important thing to notice here is that no matter what type the get data function
returns, type id will give you the type ID. In cases where the type ID is given and a classifi-
cation of the type has to be made four functions are provided where each takes a type ID as
its single most argument

is integer(type id t) returns true if the type ID refers to an integer type
is float(type id t) returns true if the type ID refers to a float type
is complex(type id t) returns true if the type ID refers to a complex type
is numeric(type id t) returns true if the type ID refers to a numeric type

Another important scenario is the situation where a user uses the string representation
to tell a program with which type it should work. In such a situation you either want to
convert the string representation of a type into a value of type id t or vica verse. The
library provides two functions for this purpose type id from str which converts the string
representation of a type to a value of type id t and str from type id which performs the
opposite operation. The usage of this two guys is again straight forward.

1 #include <pni/core/types.hpp>

2 #include <pni/core/type_utils.hpp>

15



4. Data types

3

4 using namespace pni::core;

5

6 //get a type id from a string

7 string rep = "string";

8 type_id_t id = type_id_from_str("str");

9

10 //get a string from a type id

11 rep = str_from_type_id(type_id_t::FLOAT32);

4.3. The binary type

In many cases uninterpreted binary data should be transfered from one location to the other
(a typical example would be to copy the content of one file to another). Typically one would
use a typdef to something like uint8 to realize such a type. However, this approach has
two disadvantages

1. as uint8 is a numeric type with all arithmetic operators available which we do not want
for uninterpreted binary data

2. a mere typedef would make uint8 and binary indistinguishable and thus we could not
specialize template classes for each of them.

Consequently binary was implemented as a thin wrapper around an appropriately sized
integer type with all arithmetic operators stripped away. A short example of how to use
binary is the copy file.cpp example in the examples directory of the source distribution of
libpnicore.

examples/copy file.cpp
1

2 //-----------------------------------------------------------------------------

3 // This example shows how to implement a simple file copy.

4 //-----------------------------------------------------------------------------

5

6 #include <vector>

7 #include <fstream>

8 #include <pni/core/types.hpp>

9

10 using namespace pni::core;

11

12 typedef std::vector<binary> binary_vector;

13

14 int main(int ,char **)

15 {

16 //open the input file

17 std::ifstream i_stream("Makefile",std::fstream::binary);

18

19 //determine the length of the file

16



4.4. The none type

20 size_t length = i_stream.seekg(0,std::ifstream::end).tellg();

21 i_stream.seekg(0,std::ifstream::beg);

22

23 //allocate memory

24 binary_vector data(length);

25

26 //read data

27 i_stream.read(reinterpret_cast<char*>(data.data()),length);

28 //close input file

29 i_stream.close();

30

31 //open output file

32 std::ofstream o_stream("Makefile.copy",std::fstream::binary);

33 o_stream.write(reinterpret_cast<char*>(data.data()),length);

34 //close the output stream

35 o_stream.close();

36

37 return 0;

38 }

In lines 8 and 10 we include the pni/core/types.hpp header file and instruct the compiler
to use the pni::core namespace by default. In line 12 a vector type with binary elements is
defined and an instance of this type is allocated in line 24. In line 27 data is read from the
input file and stored in the vector. Now, it is clear from here that a vector of type char would
have perfectly served the same purpose. The major difference is that unlike char binary has
absolutely no semantics. In practice there is nothing much you can do without it rather than
store it back to another stream as it is done in line 33.

4.4. The none type

The none type represents the absence of a type. It is a dummy type of very limited function-
ality and is mainly used internally by libpnicore. One major application of the none type
is to do default construction of type erasures (see chapter 6). For all practical purposes this
type can be ignored.

4.5. The bool t type

Unlike the C programming language C++ provides a native bool type. Unfortunately the C++
standardization committee made some unfortunate decisions with bool and STL containers.
std::vector for instance is in most cases specialized for the standard C++ bool type. In
the most common STL implementation std::vector is considered an array of individual bits.
Meaning that every byte in the vector is storing a total of 8 bool values. Consequently
we cannot obtain an address for a particular bit but only for the byte where it is stored.
Hence std::vector<bool> does not provide the data method which is required for storage
containers used with the mdarray templates (see chapter 5).
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4. Data types

To overcome this problem a new boolean type was included in libpnicore which can
be converted to bool but uses a single byte for each boolean value and thus can use the
std::vector template. So use the libpnicore bool t type whenever working with libpnicore

templates or whenever the address of a container element is required. For all other purposes
the default C++ bool type can be used.

4.6. Numeric type conversion

libpnicore provides facilities for save numeric type conversion. These functions are not only
used internally by the library they are also available to users. The conversion policy enforced
by libpnicore is more strict than that of standard C++. For instance you cannot convert
a negative integer to an unsigned integer type. The goal of the conversion rules are set up in
order to avoid truncation errors as they would typically occur when using the standard C++
rules.

The basic rule for conversion between two integer type A and B is as follows

A value of type S can only be converted to type B if the value does not exceed the
numeric range of type B.

A consequence of this rule is that a signed integer can only be converted to an unsigned type
if its value is larger than 0. This is different from the standard C++ rule where the unsigned
target type will just overflow.

The second basic rule which governs libpnicores conversion policy is

During a conversion no information must be lost!

Hence, conversion from a floating point type to an integer type is prohibited as it would most
likely lead to truncation and thus a loss of information. Conversion from a scalar float value
to a complex value is allowed (as long as the first rule applies to the base type of the complex
type) but one cannot convert a complex value to a scalar float type.

Several types cannot be converted to anything than themselves

• bool t which can be only the result of a boolean operation.

• binary as this type is considered to be a completely opaque type conversion to any
other type is prohibited. Furthermore no type can be converted to binary.

• string conversion to string is done exclusively carried out by formatters provided by
the IO library.

The library distinguishes between two kinds of type conversion

unchecked conversion the conversion can be done without checking the value

checked conversion the value has to be checked if it fits into the target type.

Table ?? gives an overview between which types conversion is possible and whether unchecked
or checked conversion will be used.
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4. Data types

4.6.1. The convert function template

At the heart of libpnicores type conversion system is the convert function template. The
declaration of the template looks somehow like this

template<typename ST,typename TT> TT convert(const ST &v);

A value of a particular source type (denoted by the template parameter ST) is passed as an
argument to the convert template. The value of this argument will then be converted to a
value of the target type TT and returned from the function template. This function template
throws two exceptions

type error in situations where the type conversion is not possible
range error where the source value does not fit into the target type

The behavior of this function can best be demonstrated examples.

auto f = convert<float32>(int32(5));

In this example a value of type int32 is successfully converted to a value of type float32,
while

auto f = convert<uint16>(float32(-5)); // throws type_error

leads to type error. According to the conversion policies mentioned above a float value
cannot be converted to an integer due to truncation issues.

auto f = convert<uint32>(int32(-3)); //throws range_error

range error will be thrown as a negative value cannot be converted to an unsigned type. A
similar situation would be

auto f = convert<uint8>(int16(10000)); //throws range_error

where range error would indicate that it is impossible to store a value of 10000 in an 8-Bit
unsigned variable.
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5. Arrays

C++ has no multidimensional array type (MDA) in its standard library. However, MDAs are
crucial for the developmemt of scientific applications. One of the reasons for the continuing
success of languages like Fortran or Python is their excellent support for MDAs1. The lack of
an MDA type in C++ was indeed the spark that initiated the developement of libpnicore.
Before discussing libpnicores array facilities some terminology should be defined:

element type (ET) referes to the data type of the individual elements stored in an
MDA. For MDAs this will typically be a numeric type like an
integer or a floating point number.

rank r denotes the number of dimensions of an MDA
shape s is a vector of dimension r whose elements are the number of ele-

ments along each dimension. The elements of s are denoted as si
with i = 0, . . . , r − 1

The hart of libpnicore’s MDA support is the mdarray template. mdarray is extremely
powerfull. Thus, using mdarray directly to define array types is not for the faint harted. To
simplify the usage of multidimensional arrays the library provides three templates derived
form mdarray which are easy to use.

static array a static arrays whose shape, rank, and element type are fixed at
compile time.

fixed dim array element type and rank are fixed at compile time but the shape
can be changed at runtime.

dynamic array a fully dynamic array type where only the element type must be
known at compile time. The rank as well as the shape can be
altered at runtime

These types are all defined in pni/core/arrays.hpp. In addition to this two basic templates
there are several utility classes and templates like

array view a template providing a particular view on an array (see Sec. ??)
array a type erasure that can be used with any instance of an array

template (see Chapter ??)

All array types derived from mdarray provide the following features

1. unary and binary arithmetics if the element type is a numeric type.

2. slicing to extract only a part of a large array

3. simple access to data elements using variadic operators.

4. all array types are full STL compliant containers and thus can be used along with STL
algorithms.

1For Python arrays are introduced by the numpy package.
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5. Arrays

5.1. Array construction and inquery

Constructing arrays is rather simple by means of the ::create function provided by the array
templates. The next example shows how to create arrays using this static function

examples/array create.cpp
1

2 //-----------------------------------------------------------------------------

3 // basic array construction

4 //-----------------------------------------------------------------------------

5 #include <vector>

6 #include <pni/core/types.hpp>

7 #include <pni/core/arrays.hpp>

8

9 using namespace pni::core;

10

11 //some usefull type definitions

12 typedef dynamic_array<float64> darray_type;

13

14 int main(int ,char **)

15 {

16 //construction from shape

17 auto a1 = darray_type::create(shape_t{1024,2048});

18

19 //construction from shape and buffer

20 auto a2 = darray_type::create(shape_t{1024,2048},

21 darray_type::storage_type(1024*2048));

22

23 //construction from initializer lists

24 auto a3 = darray_type::create({5},{1,2,3,4,5});

25

26 return 0;

27 }

In line 12 a concrete array type is defined from the dynamic array utility template. The
::create function comes in three flavors as shown in the previous example

line 17 it takes the shape of the array as a container and constructs the array from this. In
this case the storage container is allocated internally.

line 20 the storage container is passed along with the shape.

line 24 here the shape and the container are passed as initializer lists - this can make the
syntax more readable in some cases.

After an array has been created we may want to retrieve some of its basic properties. In the
next example we do exactly this

examples/array inquery.cpp
1

2 //-----------------------------------------------------------------------------

3 // basic array inquery

4 //-----------------------------------------------------------------------------
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5.2. Linear access to data

5 #include <vector>

6 #include <pni/core/types.hpp>

7 #include <pni/core/arrays.hpp>

8

9 using namespace pni::core;

10

11 //some usefull type definitions

12 typedef dynamic_array<float64> darray_type;

13

14 template<typename ATYPE>

15 void show_info(const ATYPE &a)

16 {

17 std::cout<<"Data type: "<<type_id(a)<<std::endl;

18 std::cout<<"Rank : "<<a.rank()<<std::endl;

19 std::cout<<"Shape : (";

20 auto s = a.template shape<shape_t>();

21 for(auto n: s) std::cout<<" "<<n<<" ";

22 std::cout<<")"<<std::endl;

23 std::cout<<"Size : "<<a.size()<<std::endl;

24 }

25

26 int main(int ,char **)

27 {

28 auto a1 = darray_type::create(shape_t{1024,2048});

29

30 show_info(a1);

31

32 return 0;

33 }

The important part is the implementation of the show info function template starting at line
14. The function template type id is used in line 17 to retrieve the type ID of the arrays
element type. rank in line 18 returns the number of dimension and size in line 23 the total
number of elements stored in the array. The shape template function in line 20 returns the
number of elements along each dimension stored in a user provided container type.

The content of arrays can be copied to and from containers using the standard std::copy

template function from the STL. In addition a version of the assignment operator is provided
which allows assignment of values from an initializer list. This is particularly useful for static
arrays which basically do not require construction.

1 typedef .... static_array_type;

2

3 static_array_type a;

4

5 a = {1,2,3,4,5};

5.2. Linear access to data

As already mentioned in the first section of this chapter, the array types provided by libpnicore

are fully STL compliant containers. They provided all the iterators required by the STL. Be-
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5. Arrays

fore we have a look on STL lets first investigate how to simply access data elements in an
array

examples/array linear access.cpp
1

2 //-----------------------------------------------------------------------------

3 // Linear data access

4 //-----------------------------------------------------------------------------

5 #include <random>

6 #include <pni/core/types.hpp>

7 #include <pni/core/arrays.hpp>

8

9 using namespace pni::core;

10

11 typedef uint16 channel_type;

12 typedef fixed_dim_array<channel_type,1> mca_type;

13

14 int main(int ,char **)

15 {

16 auto mca = mca_type::create(shape_t{128});

17

18 //initialize

19 std::random_device rdev;

20 std::mt19937 generator(rdev());

21 std::uniform_int_distribution<channel_type> dist(0,65000);

22

23 //generate data

24 for(auto &channel: mca) channel = dist(generator);

25

26 //subtract some number

27 for(size_t i=0;i<mca.size();++i) if(mca[i]>=10) mca[i] -= 10;

28

29 //set the first and last element to 0

30 mca.front() = 0;

31 mca.back() = 0;

32

33 //output data

34 for(auto channel: mca) std::cout<<channel<<std::endl;

35

36 return 0;

37 }

For all array types the new C++ for-each construction can be used as shown in lines 24
and 34. Unchecked access (no index bounds are checked) is provided via the [] operator as
demonstrated in line 27. Finally, in cases where the index should be checked use the at()

method like in lines 30 and 31. Some of the operations in this example can be done much
more efficient with STL algorithms as demonstrated in the next example

examples/array stl.cpp
1

2 //-----------------------------------------------------------------------------

3 // using STL algorithms
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5.3. Multidimensional access

4 //-----------------------------------------------------------------------------

5 #include <algorithm>

6 #include <random>

7 #include <pni/core/types.hpp>

8 #include <pni/core/arrays.hpp>

9

10 using namespace pni::core;

11

12 typedef uint16 pixel_type;

13 typedef fixed_dim_array<pixel_type,2> image_type;

14

15 int main(int ,char **)

16 {

17 auto image = image_type::create(shape_t{1024,512});

18

19 std::fill(image.begin(),image.end(),0); //use STL std::fill to initialize

20

21 std::random_device rdev;

22 std::mt19937 generator(rdev());

23 std::uniform_int_distribution<pixel_type> dist(0,65000);

24

25 std::generate(image.begin(),image.end(),

26 [&generator,&dist](){ return dist(generator); });

27

28 //get min and max

29 std::cout<<"Min: "<<*std::min_element(image.begin(),image.end())<<std::endl;

30 std::cout<<"Max: "<<*std::max_element(image.begin(),image.end())<<std::endl;

31 std::cout<<"Sum: ";

32 std::cout<<std::accumulate(image.begin(),image.end(),pixel_type(0));

33 std::cout<<std::endl;

34

35 return 0;

36 }

In line 19 std::fill is used to initialize the array to 0 and std::generate in line 25 fills it
with random numbers using a lambda expression . The rest of the example should be trivial
(if not, please lookup a good C++ STL reference).

5.3. Multidimensional access

Though being an important feature, linear access to multidimensional arrays is not always
useful. In particular the last example where we pretended to work on image data implementing
algorithms would be rather tedious if we would have had only linear access. It is natural for
such objects to think in pixel coordinates (i, j) rather than the linear offset in memory.
libpnicore provides easy multidimensional access to the data stored in an array. The next
example shows how to use this feature to work only on a small region of the image data as
defined in the last example

examples/array multiindex.cpp
1

2 //-----------------------------------------------------------------------------
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3 // using STL algorithms

4 //-----------------------------------------------------------------------------

5 #include <algorithm>

6 #include <random>

7 #include <pni/core/types.hpp>

8 #include <pni/core/arrays.hpp>

9

10 using namespace pni::core;

11

12 typedef uint16 pixel_type;

13 typedef std::array<size_t,2> index_type;

14 typedef fixed_dim_array<pixel_type,2> image_type;

15

16 int main(int ,char **)

17 {

18 auto image = image_type::create(shape_t{1024,512});

19

20 std::fill(image.begin(),image.end(),0); //use STL std::fill to initialize

21

22 std::random_device rdev;

23 std::mt19937 generator(rdev());

24 std::uniform_int_distribution<pixel_type> dist(0,65000);

25

26 std::generate(image.begin(),image.end(),

27 [&generator,&dist](){ return dist(generator); });

28

29

30 size_t zero_count = 0;

31 size_t max_count = 0;

32 for(size_t i=512;i<934;++i)

33 {

34 for(size_t j=128;j<414;++j)

35 {

36 if(image(i,j) == 0) zero_count++;

37 if(image(index_type{{i,j}}) >= 10000) max_count++;

38

39 }

40 }

41

42 std::cout<<"Found 0 in "<<zero_count<<" pixels!"<<std::endl;

43 std::cout<<"Found max in "<<max_count<<" pixels!"<<std::endl;

44

45 return 0;

46 }

The interesting part here are lines 36 and 37. You can pass the multidimensional indexes
either as a variadic argument list to the () operator of the array type (as in line 36) or you
can use a container like in line 37. The former approach might look a bit more familiar,
however, in some cases when decisions have to made at runtime the container approach might
fits better. However, passing containers reduces access performance approximately by a factor
of 2. Thus, as a rule of thumb you should always use the variadic form when you know the
number of dimensions the array has and containers only in those cases where this information
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5.4. Array views and slicing

is only available at runtime.

5.4. Array views and slicing

In the previous example multiindex access was used to do work on only a small part of the
image data. libpnicore provides view types for arrays which would make these operations
easier. Views are created by passing instances of slice to the () operator of an array type.
Slices in libpnicore work pretty much the same as in python. Lets have a look on the
following example

examples/array view.cpp
1

2 //-----------------------------------------------------------------------------

3 // using views with STL algorithms

4 //-----------------------------------------------------------------------------

5 #include <algorithm>

6 #include <random>

7 #include <pni/core/types.hpp>

8 #include <pni/core/arrays.hpp>

9

10 using namespace pni::core;

11

12 typedef uint16 pixel_type;

13 typedef std::array<size_t,2> index_type;

14 typedef fixed_dim_array<pixel_type,2> image_type;

15

16 int main(int ,char **)

17 {

18 auto image = image_type::create(shape_t{1024,512});

19

20 std::fill(image.begin(),image.end(),0); //use STL std::fill to initialize

21

22 std::random_device rdev;

23 std::mt19937 generator(rdev());

24 std::uniform_int_distribution<pixel_type> dist(0,65000);

25

26 std::generate(image.begin(),image.end(),

27 [&generator,&dist](){ return dist(generator); });

28

29

30 auto roi = image(slice(512,934),slice(128,414));

31 auto zero_count = std::count_if(roi.begin(),roi.end(),

32 [](pixel_type &p){return p==0;});

33 auto max_count = std::count_if(roi.begin(),roi.end(),

34 [](pixel_type &p){return p>= 10000; });

35

36 std::cout<<"Found 0 in "<<zero_count<<" pixels!"<<std::endl;

37 std::cout<<"Found max in "<<max_count<<" pixels!"<<std::endl;

38

39 return 0;

40 }
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5. Arrays

The view is created in line 30 where the slices are passed instead of integer indices to the ()

operator. A slice selects an entire index range along a dimension. The first argument to the
slice constructor is the starting index and the last the stop index of the range. The stop
index is not included (just as it is the case with Python slices). If the () operator of an array
is called with any of its arguments being a slice a view object is returned instead of a single
value or reference to a single value. View objects are pretty much like arrays themselves.
However, they do not hold data by themselves but only a reference to the original array. Like
arrays they are fully STL compliant containers and thus can be used with STL algorithms as
shown in lines 31 and 33.

View types can be copied and moved and thus can be stored in STL containers as shown
in the next example

examples/array view container.cpp
1

2 //-----------------------------------------------------------------------------

3 // using views with STL algorithms and containers

4 //-----------------------------------------------------------------------------

5 #include <algorithm>

6 #include <random>

7 #include <pni/core/types.hpp>

8 #include <pni/core/arrays.hpp>

9

10 using namespace pni::core;

11

12 typedef uint16 pixel_type;

13 typedef std::array<size_t,2> index_type;

14 typedef fixed_dim_array<pixel_type,2> image_type;

15 typedef image_type::view_type roi_type;

16 typedef std::vector<roi_type> roi_vector;

17

18 int main(int ,char **)

19 {

20 auto image = image_type::create(shape_t{1024,512});

21

22 std::fill(image.begin(),image.end(),0); //use STL std::fill to initialize

23

24 std::random_device rdev;

25 std::mt19937 generator(rdev());

26 std::uniform_int_distribution<pixel_type> dist(0,65000);

27

28 std::generate(image.begin(),image.end(),

29 [&generator,&dist](){ return dist(generator); });

30

31 roi_vector rois;

32 rois.push_back(image(slice(512,934),slice(128,414)));

33 rois.push_back(image(slice(0,128),slice(4,100)));

34 rois.push_back(image(200,slice(450,512)));

35

36 for(auto roi: rois)

37 {

38 auto zero_count = std::count_if(roi.begin(),roi.end(),

39 [](pixel_type &p){return p==0;});
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40 auto max_count = std::count_if(roi.begin(),roi.end(),

41 [](pixel_type &p){return p>= 10000; });

42

43 std::cout<<std::endl;

44 std::cout<<"Found 0 in "<<zero_count<<" pixels!"<<std::endl;

45 std::cout<<"Found max in "<<max_count<<" pixels!"<<std::endl;

46 std::cout<<std::endl;

47 }

48

49 return 0;

50 }

Here we apply the algorithms from the previous example not to a single but to several selec-
tions in the image. As shown in lines 32 to 34 we can safely store views in a container and
later iterate over it.

In general views make algorithm development much easier as we have to develop algorithms
only for entire arrays. If it should be applied to only a part of an array we can use a view
and pass it to the algorithm. As views expose the same interface as an array the algorithm
should work on views too.

5.5. Arithmetic expressions

Array and view types fully support the common arithmetic operators +, *, /, and - in their
binary and unary forms. The binary versions are implemented as expression templates avoid-
ing the allocation of unnecessary temporary and giving the compiler more possibilities to
optimize the code. Views, arrays and scalars can be mixed within all arithmetic expressions.
There is nothing magical with expression templates as they work entirely transparent to the
user. Just use the arithmetic expressions as you are used to

examples/array arithmetic1.cpp
1

2 //-----------------------------------------------------------------------------

3 // using views with STL algorithms

4 //-----------------------------------------------------------------------------

5 #include <algorithm>

6 #include <random>

7 #include <pni/core/types.hpp>

8 #include <pni/core/arrays.hpp>

9

10 using namespace pni::core;

11

12 typedef float64 number_type;

13 typedef fixed_dim_array<number_type,2> image_type;

14

15 int main(int ,char **)

16 {

17 shape_t s{1024,512};

18 auto image = image_type::create(s);

19 auto background = image_type::create(s);

20 number_type exp_time = 1.234;

21 number_type current = 98.3445;
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5. Arrays

22

23 //compute the corrected image

24 image = (image-background)/exp_time/current;

25

26 return 0;

27 }

The important line here is 24 where arrays and scalars are mixed in an arithmetic expression.
One can also mix arrays, selections, and scalars as the next examples shows

examples/array arithmetic2.cpp
1

2 //-----------------------------------------------------------------------------

3 // using views with STL algorithms

4 //-----------------------------------------------------------------------------

5 #include <algorithm>

6 #include <random>

7 #include <pni/core/types.hpp>

8 #include <pni/core/arrays.hpp>

9

10 using namespace pni::core;

11

12 typedef float64 number_type;

13 typedef fixed_dim_array<number_type,3> stack_type;

14 typedef fixed_dim_array<number_type,2> image_type;

15 typedef fixed_dim_array<number_type,1> data_type;

16

17 int main(int ,char **)

18 {

19 shape_t frame_shape{1024,512};

20 shape_t data_shape{100};

21 shape_t stack_shape{100,1024,512};

22 auto image_stack = stack_type::create(stack_shape);

23 auto background = image_type::create(frame_shape);

24 auto exp_time = data_type::create(data_shape);

25 auto current = data_type::create(data_shape);

26

27 for(size_t i = 0;i<data_shape[0];++i)

28 {

29 std::cout<<"Processing frame "<<i<<" ..."<<std::endl;

30 auto curr_frame = image_stack(i,slice(0,1024),slice(0,512));

31 curr_frame = (curr_frame - background)/exp_time[i]/current[i];

32 }

33

34 return 0;

35 }

In line 30 a single image frame is selected from a stack of images and used in line 31 in an
arithmetic expression. In fact, what we are doing here is, we are writing the corrected data
back on the stack since curr frame is just a view on the particular image in the stack.
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5.6. Example: matrix-vector and matrix-matrix multiplication

5.6. Example: matrix-vector and matrix-matrix multiplication

In the last example matrix vector multiplications are treated. The full code can be viewed in
array arithmetic3.cpp in the source distribution. But lets first start with the header

examples/array arithmetic3.cpp
24

25 //-----------------------------------------------------------------------------

26 // basic linear algebra

27 //-----------------------------------------------------------------------------

28 #include <iostream>

29 #include <algorithm>

30 #include <random>

31 #include <pni/core/types.hpp>

32 #include <pni/core/arrays.hpp>

33

34 using namespace pni::core;

35

36 // define the matrix and vector types

37 template<typename T,size_t N> using matrix_temp = static_array<T,N,N>;

38 template<typename T,size_t N> using vector_temp = static_array<T,N>;

39

Besides including all required header files matrix and vector templates are defined in lines 37
and 38 using the new C++11 template aliasing.

5.6.1. Matrix vector multiplication

The implementation of the matrix vector multiplication is shown in the next block. In other
words

r = Av or rj = Aj,ivi (5.1)

with A denoting a N × N matrix and r and v are N -dimensional vectors. In all formulas
Einsteins sum convention is used.

examples/array arithmetic3.cpp
64 //-----------------------------------------------------------------------------

65 // matrix-vector multiplication

66 template<typename T,size_t N>

67 vector_temp<T,N> mv_mult(const matrix_temp<T,N> &m,const vector_temp<T,N> &v)

68 {

69 vector_temp<T,N> result;

70

71 size_t i = 0;

72 for(auto &r: result)

73 {

74 const auto row = m(i++,slice(0,N));

75 r = std::inner_product(v.begin(),v.end(),row.begin(),T(0));

76 }

77 return result;

78 }

79

80 //-----------------------------------------------------------------------------
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5. Arrays

In line 74 we select the i-th row of the matrix and compute the inner product of the row
vector and the input vector in line 75.

5.6.2. Vector matrix multiplication

The vector matrix multiplication

r = vA or ri = vjAj,i (5.2)

is computed analogously

examples/array arithmetic3.cpp
80 //-----------------------------------------------------------------------------

81 // vector-matrix multiplication

82 template<typename T,size_t N>

83 vector_temp<T,N> mv_mult(const vector_temp<T,N> &v,const matrix_temp<T,N> &m)

84 {

85 vector_temp<T,N> result;

86

87 size_t i = 0;

88 for(auto &r: result)

89 {

90 const auto col = m(slice(0,N),i++);

91 r = std::inner_product(col.begin(),col.end(),v.begin(),T(0));

92 }

93 return result;

94 }

95

despite the fact that we are choosing the appropriate column instead of a row in line 90.

5.6.3. Matrix matrix multiplication

Finally we need an implementation for the matrix - matrix multiplication

C = AB or Ci,j = Ai,kBk,j (5.3)

examples/array arithmetics3.cpp
96 //-----------------------------------------------------------------------------

97 // matrix-matrix multiplication

98 template<typename T,size_t N>

99 matrix_temp<T,N> mv_mult(const matrix_temp<T,N> &m1,const matrix_temp<T,N> &m2)

100 {

101 matrix_temp<T,N> result;

102

103 for(size_t i=0;i<N;++i)

104 {

105 for(size_t j=0;j<N;++j)

106 {

107 const auto row = m1(i,slice(0,N));

108 const auto col = m2(slice(0,N),j);
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109 result(i,j) = std::inner_product(row.begin(),row.end(),

110 col.begin(),T(0));

111 }

112 }

113 return result;

114 }

115

The rows and columns are selected in lines 107 and 108 respectively. Line 109 finally computes
the inner product of the row and column vector.

5.6.4. Putting it all together: the main function

Finally the main program shows a simple application of these template functions.

examples/array arithemtic3.cpp
116 //-----------------------------------------------------------------------------

117 // define some local types

118 typedef float64 number_type;

119 typedef vector_temp<number_type,3> vector_type;

120 typedef matrix_temp<number_type,3> matrix_type;

121

122

123 int main(int ,char **)

124 {

125 vector_type v;

126 matrix_type m1,m2;

127 m1 = {1,2,3,4,5,6,7,8,9};

128 m2 = {9,8,7,6,5,4,3,2,1};

129 v = {1,2,3};

130

131 std::cout<<"m1 = "<<std::endl<<m1<<std::endl;

132 std::cout<<"m2 = "<<std::endl<<m2<<std::endl;

133 std::cout<<"v = "<<std::endl<<v<<std::endl;

134 std::cout<<"m1.v = "<<std::endl<<mv_mult(m1,v)<<std::endl;

135 std::cout<<"v.m1 = "<<std::endl<<mv_mult(v,m1)<<std::endl;

136 std::cout<<"m1.m2 = "<<std::endl<<mv_mult(m1,m2)<<std::endl;

137

138 return 0;

It is important to understand that the appropriate function is determined by the types of the
arguments (vector or matrix). This is a rather nice example of how to use the typing system
of C++ to add meaning to objects. For the exact implementation of the output operators
please consult the full source code in array arithmetic3.cpp.

The output of the program is

>./array_arithmetic3

m1 =

| 1 2 3 |

| 4 5 6 |

| 7 8 9 |
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m2 =

| 9 8 7 |

| 6 5 4 |

| 3 2 1 |

v =

| 1 |

| 2 |

| 3 |

m1.v =

| 14 |

| 32 |

| 50 |

v.m1 =

| 30 |

| 36 |

| 42 |

m1.m2 =

| 30 24 18 |

| 84 69 54 |

| 138 114 90 |
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Templates are powerful tools as they allow the compiler to perform all kinds of optimiza-
tions.In addition they help to avoid virtual functions in classes and thus increase performance
by avoiding call indirection through the virtual functions table. However, there are two major
obstacles with templates

1. template expansion virtually always leas to code generation and this could lead to large
binaries which might be a problem on small hardware architectures

2. template libraries and the applications which are using them are harder to maintain.

The last point may requires a bit of explanation. The reason why system administrators
are not very happy with programs based on template libraries is that the latter ones are
distributed as source code. Consequently whenever a bug is fixed in the library all programs
depending on the code required recompilation. For programs using binary libraries only the
library has to be updated. This is obviously much easier than recompiling all the programs
depending on a library.

A reasonable solution for this problem is the use of type erasures. libpnicore provides
three different type erasures

value stores a single scalar value of a POD type
value ref stores the reference to an instance of a POD type
array stores a multidimensional array type

To use type erasures include the /pni/core/type erasures.hpp at the top of your source
file.

6.1. The value type erasures

6.1.1. Construction

The value type erasure stores the value of a single primitive type. Whenever an instance of
value is constructed memory is allocated large enough to store the value of a particular type.
value provides a default constructor. The instance produced by the default constructor

holds a value of type none.

value v;

std::cout<<v.type_id()<<std::endl; //output NONE

Though there is not too much one can do with such a type it has the nice advantage that one
can default construct an instance of type value. In addition a copy and a move constructor
is provided. All these constructors are implicit.

The more interesting constructors are explicit. An instance of value can be constructed
either from a variable from a particular type or from a literal as shown in this next example
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//explicit construction from a variable

int32 n = 1000;

value v1(n);

std::cout<<v1.type_id()<<std::endl; //output INT32

//explicit construction from a literal

value v2(3.4212);

std::cout<<v2.type_id()<<std::endl; //output FLOAT64

//copy construction

value v3 = v1;

As mentioned earlier in this section, whenever an instance of value is constructed, memory
is allocated to store the quantity that should be hidden in the type erasure. The default
constructor would allocate memory for a none type with which one can do nothing useful.
A typical application for type erasures would be to store primitive values of different type in
a container and we would like to make the decision which type to use at runtime. For this
purpose one could define a vector type like this

typedef std::vector<value> value_vector;

However, how would one initialize an instance of this vector? It would not make too much
sense to use the default constructor (as we cannot pass type information). The solution to
this problem is the make value function which comes in two flavors. The first, as shown in
the next code snippet, takes a type ID as a single argument and returns an instance of value
of the requested type.

std::vector<type_id_t> ids = get_ids();

value_vector values;

for(auto id: ids)

values.push_back(make_value(id));

In addition there is a function template which serves the same purpose

value v = make_value<uint32>();

Here the type is determined by the template parameter of the function template.

6.1.2. Assignment

Copy and move assignment are provided by the value between two of its instances. In both
situations the type of the value instance on the left handside of the operator changes (this
is obvious). Move and copy assignment have the expected semantics.

The more interesting situation appears with assigning new values to an instance of value.
As memory is only allocated during creation (or copy assignment) assigning a new value does
not create a new instance of value but rather tries to perform a type conversion between the
instance of value on the LHS of the operator and the value on the LHS.
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value v = make_value<float32>(); //creates a value for a float32 value

v = uint16(5); //converts uint16 value to a float32 value

The type conversion follows the same rules as described in the section about type conversion
earlier in this manual (in fact it uses this functionality). Consequently

value v = make_value<float64>();

v = complex32(3,4); //throws type_error

will throw a type error exception as a complex number cannot be converted to a single float
value.

6.1.3. Retrieving data

Retrieving data from an instance of value is done via the as template method like this

value v = ....;

auto data = v.as<uint8>();

The template parameter of as determines the data type as which the data should be retrieved.
Like for value assignment the method performs a type conversion if necessary and throws
type error or range error exceptions if the conversion is not possible or the numeric range
of the requested type is too small.

Information about the type of the data stored in the value instance can be obtained by
means of the type id method.

value v = ...;

v.type_id();

6.2. The value ref type erasure

The value type encapsulates data of an arbitrary type and has full ownership of the data.
Sometimes it is more feasible to only store a reference to an already existing data item of a
primitive type. If the reference should be copyable the default approach towards this problem
would be to use std::reference wrapper. Unfortunately, this template includes the full type
information – which is what we want to get rid of when using a type erasure. libpnicore for
this purpose provides the value ref erasure. It stores a reference to an existing data item
and hides all the type information. Though value ref behaves quite similar to value there
are some subtle differences originating from its nature as a reference type. Thus it is highly
recommended to read this section carefully if you are planing to use value ref.
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6.2.1. Construction

Like value, value ref is default constructible

value_ref vref;

allowing it to be used in STL containers. However, unlike value the default constructed refer-
ence points to nowhere. Every access to any of value refs methods will throw memory not allocated error

for a default constructed instance of value ref. The preferred way of how to initialize
value ref is by passing an instance of std::reference wrapper to it

float64 data;

value_ref data_ref(std::ref(data));

In addition value ref is copy constructible.

6.2.2. Assignment

The most difficult operation with value ref is assignment. It really depends on the right
handside of the assignment operator what happens. One can do copy assignment

float32 temperature;

uint32 counter;

value_ref v1(std::ref(temperature)); //reference to temperature

value_ref v2(std::ref(counter)); //reference to counter

v1 = v2; //now v1 is a reference to counter too

which has the same semantics as the copy assignment for std::reference wrapper where
the reference is copied.

Another possibility is to assign the value of a primitive type to an instance of value ref.
In this case two things are taking place

1. the value is converted to the type of the data item the instance of value ref references

2. the converted value is assigned to the referenced data item

Consider this example

float32 temperature;

value_ref temp_ref(std::ref(temperature));

temp_ref = uint16(12);

In this example the value 12 of type uint16 is first converted to a float32 value. This new
float value is then assigned to the variable temperature. As always with type conversions
exceptions will be thrown if the conversion fails.

One can also change the variable an instance of value ref references with
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value_ref ref = ....; //reference to some data item

complex64 refractive_index = ...;

ref = std::ref(refractive_index); //now reference points to refractive_index

Finally a value from a value instance can be assigned with

value v = int32(100);

value_ref ref = ....;

ref = v;

in which case type conversion from the internal type of v to the internal type of ref occurs.
Exceptions are thrown if the type conversion fails.

6.2.3. Retrieving data

Data retrieval for value ref works exactly the same way as for value. The type provides a
template method as which can be used to get a copy of the data stored in the item referenced
as an instance of a type determined by the template parameter.

value_ref ref = ....;

auto data = ref.as<uint32>();

Again, type conversion takes place from the original type of the referenced data item to the
type requested by the user via the template parameter. Finally, as value, value ref provides
a type id member function which returns the type ID of the referenced data item.

6.3. Type erasures for arrays

As libpnicore provides a virtually indefinite number of array types via its mdarray template
the array type erasure is maybe one of the most important ones. Like the value type erasure
it will take over full ownership of the array stored in it.

A good introduction into the array type erasure is this particular version of the array
inquiry example from the previous chapter on arrays.

examples/type erasure3.cpp
25 #include <vector>

26 #include <pni/core/types.hpp>

27 #include <pni/core/arrays.hpp>

28 #include <pni/core/type_erasures.hpp>

29

30 using namespace pni::core;

31

32 //some usefull type definitions

33 typedef dynamic_array<float64> darray_type;

34 typedef static_array<float64,3,3> sarray_type;
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35 typedef fixed_dim_array<float64,2> farray_type;

36

37 void show_info(const array &a)

38 {

39 std::cout<<"Data type: "<<type_id(a)<<std::endl;

40 std::cout<<"Rank : "<<a.rank()<<std::endl;

41 std::cout<<"Shape : (";

42 auto s = a.shape<shape_t>();

43 for(auto n: s) std::cout<<" "<<n<<" ";

44 std::cout<<")"<<std::endl;

45 std::cout<<"Size : "<<a.size()<<std::endl;

46 }

47

48 int main(int ,char **)

49 {

50 auto a1 = darray_type::create(shape_t{1024,2048});

51 auto a2 = farray_type::create(shape_t{1024,2048});

52 sarray_type a3;

53

54 std::cout<<"--------------------------------"<<std::endl;

55 show_info(array(a1));

56 std::cout<<std::endl<<"--------------------------------"<<std::endl;

57 show_info(array(a2));

58 std::cout<<std::endl<<"--------------------------------"<<std::endl;

59 show_info(array(a3));

60

61 return 0;

62 }

In the previous version, where show info was a template function a new version of show info

would have been created for each of the three array types used in this example. By using the
type erasure only a single version of show info is required which reduces the total code size
of the binary.

The current implementation of array is rather limited in comparison to the mdarray tem-
plate. Multidimensional access is not provided and only forward iteration is implemented. In
addition there is now array ref type erasure which only keeps a reference to an instance of
mdarray.

The iterators themselves have a subtle speciality. They do not provide a -> operator. This
has a rather simple reason. While all other interators return a pointer to a particular data
element in a container the array iterators cannot do this (they do no hold any type infor-
mation). Instead they return an instance of value for constant or value ref for read/write
iterators. In order to keep the semantics of the -> operator we would have to return *value

or *value ref from the -> operator. However, this is not possible as these objects are just
temporaries and would be destroyed once the operator function has returned. However, this
is only a small inconvenience as it has no influence on the STL compliance of the iterator.
One can still use the foreach construction

array a(...);

for(auto x: a)

std::cout<<s<<std::endl;
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and all STL algorithms with a array type erasure.

6.4. An example: reading tabular ASCII data

In this final section a typical use-case for a type erasure will be discussed. One problem that
regularly pops up is to read tabular ASCII data. For this example a very simple file format
has been used. The file record.dat has the following content

examples/record.dat
11 -123.23 (-1.,0.23)

13 -12.343 (12.23,-0.2)

16 134.12 (1.23,-12.23)

While the elements of the first two columns are integer and float respectively, the third
column holds complex numbers. The task is simple: read the values from the file without
losing information. This means that we do not want to truncate values (for instance float to
integer) or do inappropriate type conversions (for instance convert everything to the complex
type) which may add rounding errors.

There are several ways how to approach this problem. The most straight forward one would
be to create a struct with an integer, a float, and a complex element. However, this approach
is rather static. If a column will be added or removed or only the order of the columns is
changed we have to alter the code.

In this example a different path has been taken. Each individual line is represented by
a record type which consists of a vector whose elements are instances of the value type
erasure.

examples/type erasure record.cpp
26 #include <vector>

27 #include <iostream>

28 #include <fstream>

29 #include <pni/core/types.hpp>

30 #include <pni/core/type_erasures.hpp>

31 #include <boost/spirit/include/qi.hpp>

32 #include <boost/spirit/include/phoenix.hpp>

33

34 using namespace pni::core;

35 using namespace boost::spirit;

36

37 typedef int32 int_type;

38 typedef float64 float_type;

39 typedef complex64 complex_type;

40 typedef std::vector<value> record_type;

The entire table is again a vector with record type as element type. In addition we have
defined a special type to store complex numbers (complex type).

6.4.1. Defining the parsers

One of the key elements for this example is to use the boost::spirit parser framework. We
define three parsers
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1. one for the complex type

2. one for a value which can parser integer, double, and complex numbers

3. and one for the entire record.

The boost::spirit framwork is indeed rather complex and requires a deep understanding
of some of the additional boost libraries like fusion and phoenix. However, as we will see,
it is worth to become familiar with them as will be shown here.Add a

reference
for the
boost
docu-
menta-
tion here

Add a
reference
for the
boost
docu-
menta-
tion here

In this next snippet the definition of the complex number parser is shown.

examples/type erasure record.cpp
45 //----------------------------------------------------------------------------

46 template<typename ITERT>

47 struct complex_parser : public qi::grammar<ITERT,complex_type()>

48 {

49 qi::rule<ITERT,complex_type()> complex_rule;

50

51 complex_parser() : complex_parser::base_type(complex_rule)

52 {

53 using namespace boost::fusion;

54 using namespace boost::phoenix;

55 using qi::_1;

56 using qi::_2;

57 using qi::double_;

58

59 complex_rule = (’(’>>double_>>’,’>>double_>>’)’)

60 [_val = construct<complex_type>(_1,_2)];

61 }

We assume complex numbers to be stored as tuples of the form (real part,imaginary

part). As we can see in the above example the complex type is assembled from the two
double values matched in the rule. The next parser required is the value parser. This parser
matches either an integer, a double, or a complex value. It is a good example how to reuse
already existing parser in boost::spirit.

examples/type erasure record.cpp
66 //----------------------------------------------------------------------------

67 template<typename ITERT>

68 struct value_parser : public qi::grammar<ITERT,pni::core::value()>

69 {

70 qi::rule<ITERT,pni::core::value()> value_rule;

71

72 complex_parser<ITERT> complex_;

73

74 value_parser() : value_parser::base_type(value_rule)

75 {

76 using namespace boost::fusion;

77 using namespace boost::phoenix;

78 using qi::_1;

79 using qi::char_;

80 using qi::int_;

81 using qi::double_;
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82 using qi::_val;

83

84 value_rule = (

85 (int_ >> !(char_(’.’)|char_(’e’)))[_val =

86 construct<pni::core::value>(_1)]

87 ||

88 double_[_val = construct<pni::core::value>(_1)]

89 ||

Finally we need a parser for the entire record. This is rather simple as boost::spirit

provides a special syntax for parsers who store their results in containers.

examples/type erasure record.cpp
94

95 //----------------------------------------------------------------------------

96 // parse an entire record

97 //----------------------------------------------------------------------------

98 template<typename ITERT>

99 struct record_parser : public qi::grammar<ITERT,record_type()>

100 {

101 qi::rule<ITERT,record_type()> record_rule;

102

103 value_parser<ITERT> value_;

104

105 record_parser() : record_parser::base_type(record_rule)

106 {

107 using qi::blank;

6.4.2. The main program

The main program is rather simple

examples/type erasure record.cpp
162 // write a single record to the output stream

163 //-----------------------------------------------------------------------------

164 void write_record(std::ostream &stream,const record_type &r)

165 {

166 for(auto v: r)

167 {

168 write_value(stream,v);

169 stream<<"\t";

170 }

171 stream<<std::endl; //terminate the output with a newline

172 }

173

174 //-----------------------------------------------------------------------------

175 // write the entire table to the output stream

Not all the code will be explained as it is only those parts which are of interest for the value

type erasure. The program can be divided into two parts:

1. reading the data (in line 166)
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2. and writing it back to standard output (in line 172)

As the latter one is rather trivial we will only consider the reading part in this document.
The output of the main function is

INT32

FLOAT64

COMPLEX32

11 -123.23 (-1,0.23)

13 -12.343 (12.23,-0.2)

16 134.12 (1.23,-12.23)

6.4.3. The reading sequence

The entry point for the read sequence is the read table function.

examples/type erasure record.cpp
128

129 //-----------------------------------------------------------------------------

130 // read an entire table from a stream

131 //-----------------------------------------------------------------------------

132 table_type read_table(std::istream &stream)

133 {

134 table_type table;

135 string line;

136

137 while(!stream.eof())

138 {

139 std::getline(stream,line);

140 if(!line.empty())

141 table.push_back(parse_record(line));

The logic of this function is rather straight forward. Individual lines are written from the
input stream until EOF and passed on to the parse record function which returns an instance
of record type. Each record is appended to the table.

The parse record function is where all the magic happens

examples/type erasure record.cpp
112

113 //-----------------------------------------------------------------------------

114 // read a single record from the stream

115 //-----------------------------------------------------------------------------

116 record_type parse_record(const string &line)

117 {

118 typedef string::const_iterator iterator_type;

119 typedef record_parser<iterator_type> parser_type;

120

121 parser_type parser;

122 record_type record;

123

The definition of this function pretty much demonstrates the power of the boost::spirit

library. All the nasty parsing work is done by the code provided by boost::spirit. The
only thing left to do is provide iterators to the beginning and end of the line.
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One of the most tedious tasks when writing applications is how to handle its configuration.
There are several possibilities how a user can tell a program about input arguments and
parameters

• via command line options and arguments

• via environment variables of the calling shell

• and via configuration files.

It is important to note that this is information the program has only read-only access too.
libpnicore provides some simple functions to make programs aware of command line options
and arguments as well as of configuration files. The facility provided by libpnicore is based
on the boost::program options library. However, its interface is much easier to use. What
makes this facility so interesting for scientific applications is the fact that every option or
argument can be given a distinct data type.

7.1. Command line options and arguments

One possibility to provide information to a program is by means of command line arguments
and options which are passed to the program when called from a shell by the user. This is
particularly true for Unix systems where many programs are called via the command line
rather than via a Desktop.

In this section we will deal with all the basics required to use libpnicores configuration
facilities. Read this in any case even if you only want to use a configuration file as many of
the things written is true also for configuration files.

7.1.1. Unix conventions

In the Unix world we have to distinguish between command line arguments and options. The
former ones are strings which can typically appear anywhere in the command calling the
program from the shell. The meaning of a particular option depends only on its position
within the command used to run a program. The latter ones, options, are introduced by
special tokens in the calling command. This token determines the meaning of a particular
option. Thus options can appear in any order after the name of the program. To get a better
feeling about arguments and options lets have a look on a typical command line call on a
Unix or Linux system

> program -oresult.dat --wavelength=1.234 in1.dat in2.dat in3.dat

The three input files at the end of the call (in1.dat, in2.dat, and in3.dat) are passed as
arguments. They can appear in any order and there is no way to distinguish one from the

45



7. Program configuration utilities

other and will be processed in the order of their appearance. This is in contrast to result.dat

and 1.234 which are passed as options. An option can be identified by a short name (by
convention this must be a single character) as it is the case for result.dat or by a long name,
like for 1.234, which must be a string without whitespaces. Short names are are introduced
by a single ’-’ and followed immediately by the value of the option. Long names start with
’--’ followed by a ’=’ and the value of the option. An option can have both, a long and a
short name. While short names are typically used when a program is called interactively by
a user to minimize the typing effort, long names are mostly used when a program is called
from a script. As they are not limited to a single character long names can be chosen much
more descriptive than short names. Being restricted to a single character short names are
sometimes only used for options which are frequently used in interactive calls while scarcely
used options have only a long name.

7.1.2. Creating a simple program configuration

Creating a configuration for a program involves three classes

• configuration which, in the end, will hold the configuration data and provide access
to it

• config option describing a single command line option

• config argument which we will use to describe command line arguments

Lets start with the above example. The source code of the program would maybe look like
this

#include <vector>

#include <pni/core/types.hpp>

#include <pni/core/config/configuration.hpp>

#include <pni/core/config/config_parser.hpp>

using namespace pni::core;

typedef std::vector<string> input_files;

int main(int argc,char **argv)

{

configuration config;

config.add_option(config_option<string>("output","o","output file"));

config.add_option(config_option<float64>("wavelength","w"));

config.add_argument(config_argument<input_files>("input",-1));

parse(config,cliargs2vector(argc,argv));

return 0;

}
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7.2. Configuration files

Configuration files handled by libpnicore follow the INI-file syntax as used by Windows.
An example file would look like this

#experiment.cfg

[beam]

wavelength = 1.543

divergence = 0.12

diameter = 1.23

[sample]

name = sample1

description = first sample in the series

To read this file create the following configuration in the program

#include <pni/core/types.hpp>

#include <pni/core/configuration.hpp>

#include <pni/core/config_parser.hpp>

using namespace pni::core;

int main(int argc,char **argv)

{

configuration config;

config.add_option(config_option<float64>("beam.wavelength",""));

config.add_option(config_option<float64>("beam.divergence",""));

config.add_option(config_option<float64>("beam.diameter",""));

config.add_option(config_option<string>("sample.name",""));

config.add_option(config_option<string>("sample.description",""));

parse(config,"experiment.cfg");

//use the options

}

7.3. Using configuration files and command line options together
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A. Benchmark results

To check the overall performance of the mdarray template provided by the library benchmark
programs have been written whose results will be presented in this chapter. Three particular
aspects are investigated by the benchmarks

• linear data access via iterators

• data access via multidimensional indexes

• performance of the arithmetic operators

To keep the number of benchmark results within reasonable bounds all benchmarks have been
performend with the three predefined specializations of the mdarray template: dynamic array,
fixed dim array, and static array. In addition to the plain array templates also their view
types have been taken into account. The view types are interesting as they add some addi-
tional code which may cause some overhead.

Its (presumed) outstanding performance is the reason why so much scientific software is
written in C. In order to show that the code provided by libpnicore can be used in high
performance applications all benchmarks are normalized to the runtime of equivalient C code.
In most situations this means that data access is done via simple pointers.

A.1. Iterator benchmarks

The essential loops whose runtime is measured for this benchmark is shown in Listings 1
and 2. It should be mentioned that for the pointer code only the loop is measured without
the time required for allocating memory.

The benchmark results are summarized in Tab. A.1. All numbers in this table are nor-
malized to the raw pointer performance and thus reflect directly any performance penalty or
advantage over direct pointer access. Table A.1 shows a small performance penalty of 2 to 4
% for the dynamic array. For fixed dim array and static array iterator access is as fast
as accessing the data via a pointer. In all cases iterating over a view shows significant perfor-
mance penalties. Using iterators on views is about 2 up to 3 times slower than accessing the
data via a pointer. This is simply due to additional overhead the view template introduces.

array type iterator (r/w) view iterator (r/w)

dynamic array 1.02/1.04 2.50/2.96

fixed dim array 0.99/1.00 2.52/2.89

static array 1.00/1.00 2.07/2.40

Table A.1.: Results for the it-
erator benchmark. r and w de-
note reading and writing results
respectively.
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for(auto &x: data)

x = buffer;

T *data = new T[N];

for(size_t i=0;i<N;++i)

data[i] = buffer;

Listing 1: The left snippet shows the core of the iterator writing benchmark and the right
one the equivalent code using plain pointers.

for(auto x: data)

buffer = x;

T *data = new T[N];

for(size_t i=0;i<N;++i)

buffer = data[i];

Listing 2: The left snippet shows the core of the iterator reading benchmark and the right
one the equivalent code using plain pointers.

A.2. Multidimensional index access

One of the major goals for libpnicore was to provide an array type which is as easy
and intuitive to use as the multidimensional array types provided by Fortran or the numpy
Python package. This includes easy access to array elements using a multidimensional in-
dex which can be passed either as a variadic list of integers or as a container of an integer
type. This immediately raises the question how fast data access via multidimensional indices
is in comparison with simple pointer access where the linear offset is computed from the
multidimensional index and the number of elements along each dimension of the array.

The results for the benchmark are shown in Tab. A.2. It follows immediately from this
table that passing the multidimensional index as a variadic argument list is the fastest way
of how to access the data. The performance is virtually equal to those of using direct pointer
access. Using the container types std::vector or std::array to pass the index will cause
in a performance penalty of 200 to 300 % for virtually all array types. As with linear access
via iterators there is a significant performance penalty when accessing data via a view. One
surprising aspect of the results shown in Tab. A.2 is the fact that at least for fixed dim array

and static array variadic access outperforms even pointer access.

The reason for the huge performance penalties is yet unclear. However, we hope that they
can be reduced in further releases.

array type variadic (r/w) vector (r/w) array (r/w)

dynamic array 1.03/1.02 3.82/4.63 3.33/3.76
dynamci array-view 3.39/6.31 6.29/6.49 4.23/5.41

fixed dim array 0.94/0.97 3.27/3.79 3.29/3.53
fixed dim array-view 3.27/6.04 5.02/6.26 4.03/5.15

static array 0.97/0.97 3.08/3.75 3.25/3.67
static array-view 2.78/3.58 4.66/5.92 4.83/5.33

Table A.2.: Results for the muldimensional index access benchmarks. For array views a
significant overhead is added. This makes views at the current state of development rather
useless for high performance applications.
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for(size_t i=0;i<nx;++i)

for(size_t j=0;j<ny;++j)

data(i,j) = buffer;

for(index[0]=0;index[0]<nx;++index[0])

for(index[1]=0;index[1]<ny;++index[1])

data(index) = buffer;

variadic index vector/array index

for(size_t i=0;i<nx;++i)

for(size_t j=0;j<ny;++j)

data[i*ny+j] = buffer;

pointer access

Listing 3: Basic loop constructions measured for the multiindex write benchmarks. The code
for reading is basically the same - just flip the RHS and LHS of the assignment operator.

operation dynamic array fixed dim array

a∗ = b 1.00 1.00

a∗ = s 0.77 0.77

a/ = b 1.00 1.00

a/ = s 1.00 1.00

a+ = b 1.00 1.00

a+ = s 0.77 0.77

a− = b 1.00 1.00

a− = s 0.77 0.77

Table A.3.: Results for the unary
arithmetic benchmarks. Both
benchmarked types show rather sim-
ilar performance. It is interesting,
however, that in some cases the ar-
ray types seem to outperform the
pointer implementation.

Finally Listing 3 shows the basic code that has been measured for this benchmark (in this
particular case for writing data). The code used for reading data is virtually the same just
flip the RHS and the LHS arguments of the assignment operator.

A.3. Arithmetics

Last but not least a feasible array type has to provide arithmetic operators of reasonable
performance. This last section compares the unary and binary arithmetic operators for the
mdarray specializations. Unlike for the other benchmarks the arithmetic benchmarks cover
only the dynamic array and fixed dim array specializations of mdarray.

A.3.1. Unary arithmetics

libpnicores mdarray template provides the following unary arithmetic operators

• += unary addition

• -= unary subtraction

• *= unary multiplication
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operation dynamic array fixed dim array Fortran

a + b 1.04 1.00 2.18

a− b 1.02 1.00 2.18

a× b 1.05 1.00 2.24

a/b 1.02 1.00 1.46

a× b + d−e
f 1.04 1.00 1.49

Table A.4.: Results for the binary arithmetic benchmarks normalized to the raw pointer
implementation of the operations.

• /= unary division

where the operations are applied element-wise on the LHS of the operator. All operators
accept either an array type or a scalar type as their RHS. The results for the benchmark are
shown in Tab. A.3. As can be obtained from Tab. A.3 the unary arithmetic operations are
as fast as their equivalent implementations using simple pointer access. Indeed in some cases
the operators are faster than the pointer approach. The s and b on the RHS of the operator
in Tab. A.3 denote scalar and array arguments on the RHS of the operator respectively.

A.3.2. Binary arithmetics

As already mentioned binary arithmetic operations are implemented with expression tem-
plates. Though the reference for the binary benchmarks are still their equivalent C expres-
sions Fortran has also been included in the benchmark. This is in so far of importance as
Fortran is, until today, considered the ultimate language for numerics. The results for the bi-
nary arithmetic benchmarks are shown in Tab. A.4. The first conclusion which can be drawn
from this table is the fact that dynamic array shows an up to 5 % performance penalty over
C code while fixed dim array is virtually as fast as the C implementation of the tested
operations. The most astonishing result is, however, the rather low performance of Fortran
not only in comparison with the C++ types but also with respect to the C implementation
of the operations (as can be seen from the last column of Tab. A.4).

The reason for the bad performance is not yet clear. It might be due to the poor quality
of the compiler (we only tested with gfortran from the GNU compiler collection). Thus the
tests should be repeated using for instance Intel’s compiler suite. On the other handside:
the GNU compiler collection is the most important for our uses which makes the results for
this set of compilers the most relevant. Another reason might be that the benchmark code is
written in C++ and the Fortran functions are linked into the C++ code statically. It may be
possible that this has some negative effect on the performance of the Fortran code. Whatever
might be the reason far the bad Fortran results, a single conclusion can be drawn from this
benchmark: Expression templates are a very sensible way to implement operators in C++
and may can help to push C++ in the field of scientific computing.
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