

Navigation inside a Protease: Substrate Selection and Product Exit in the Tricorn Protease from *Thermoplasma acidophilum*

J.S. Kim, M. Groll, H. J. Musiol, R. Behrendt, M. Kaiser, L. Moroder, R. Huber and H. Brandstetter

Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, D-82152 Planegg-Martinsried, Germany

Initial intracellular protein degradation is carried out mostly by unspecific proteases with sieving mechanisms for substrate selection. Proteasomes are representatives of this class of proteases, which form large multi-subunit complexes reaching molecular weights of 2.0 MDa. Peptides, with a preferred length of between 7 to 9 amino acids, are the major products of the proteasome. For reuse in protein synthesis or energy production, these peptides must be further degraded into free amino acids. In the archaeon *Thermoplasma acidophilum*, the degradation of proteasomal products is performed by the tricorn protease to preferentially yield di- and tripeptides. The further and final degradations to free amino acids are accomplished by the tricorn interacting factors, a proline iminopeptidase termed F1 and two metalloproteases termed F2 and F3¹⁻³.

The proposed pathway and mechanism of substrate entry and product egress through both propeller structures⁴ in the hexameric D3 symmetric tricorn protease from *Thermoplasma acidophilum* were explored by crystallographic studies of ligand complexes and by structure-based mutagenesis. Obstruction of the pore within the 7-bladed β -propeller (β 7) domain by alkylation or oxidation of an engineered double cysteine mutant strongly decreased enzymatic activities. In line herewith, the crystal structure of the tricorn protease in complex with a tetrapeptide chloromethyl ketone with deca hydrocarbon chain at the N-terminus modifying the catalytic Ser965 indicated that the channel of the β 7 domain could be a substrate route to the active site. The cysteine mutation widening the lumen of the 6-bladed β -propeller (β 6) domain enhanced catalytic activity, which was restored to normal values after its alkylation. A charge reversal mutant at the putative anchor site of the substrate C-terminus, R131E-R132E, drastically reduced the proteolytic activity. However, a free carboxy terminus is not required and the tricorn protease processes also a substrate with an amidated C-terminus. These two contradictory experimental results were clarified by the complex crystal structure of a peptide inhibitor with a diketo group at the cleavage site, which mapped the substrate recognition site and confirmed the role of Arg131-Arg132 as an anchor site. Our results strongly suggest the wider β 7 domain to serve as a selective filter and guide of the substrate to the sequestered active site, while the narrower β 6 domain routes the product to the surface. Moreover, we identified the role of Arg131-Arg132 in anchoring the substrate C-terminus.

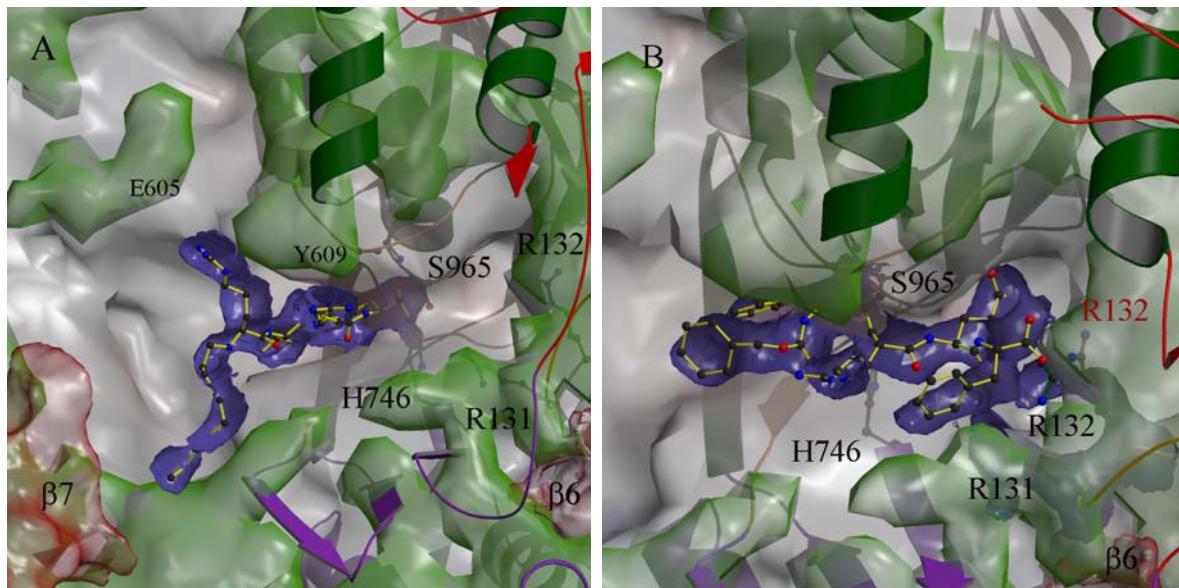


Figure 1, Tetrapeptide chloromethyl ketone derivative with deca carbon chain at the N-terminus at 2.8 Å resolution (left) and inhibitor complex structure of peptide derivative with a diketo group at the cleavage site at 2.7 Å resolution (right).

References

- [1] Tamura, T., Tamura, N., Cejka, Z., Hegerl, R., Lottspeich, F. & Baumeister, W. (1996). Tricorn protease-The core of a modular proteolytic System. *Science* **274**, 1385-1389.
- [2] Tamura, T., Tamura, N., Lottspeich, F. & Baumeister, W. (1996). Tricorn protease (TRI) interacting factor 1 from *Thermoplasma acidophilum* is a proline iminopeptidase. *FEBS Lett.* **398**, 101-105.
- [3] Tamura, N., Lottspeich, F., Baumeister, W. & Tamura, T. (1998). The role of tricorn protease and its aminopeptidase-interacting factors in cellular protein degradation. *Cell* **95**, 637-648.
- [4] Brandstetter, H., Kim, J. -S., Groll, M. & Huber, R. (2001). Crystal structure of the tricorn protease reveals a protein disassembly line. *Nature* **414**, 466-470.